In this article, we use the Picard-Thakur hybrid iterative scheme to approximate the fixed points of generalized $ \alpha $-nonexpansive mappings. For generalized $ \alpha $-nonexpansive mappings in hyperbolic spaces, we show several weak and strong convergence results. It is proved numerically and graphically that the Picard-Thakur hybrid iterative scheme converges more faster than other well-known hybrid iterative methods for generalized $ \alpha $-nonexpansive mappings. We also present an application to Fredholm integral equation.
Citation: Liliana Guran, Khushdil Ahmad, Khurram Shabbir, Monica-Felicia Bota. Computational comparative analysis of fixed point approximations of generalized $ \alpha $-nonexpansive mappings in hyperbolic spaces[J]. AIMS Mathematics, 2023, 8(2): 2489-2507. doi: 10.3934/math.2023129
In this article, we use the Picard-Thakur hybrid iterative scheme to approximate the fixed points of generalized $ \alpha $-nonexpansive mappings. For generalized $ \alpha $-nonexpansive mappings in hyperbolic spaces, we show several weak and strong convergence results. It is proved numerically and graphically that the Picard-Thakur hybrid iterative scheme converges more faster than other well-known hybrid iterative methods for generalized $ \alpha $-nonexpansive mappings. We also present an application to Fredholm integral equation.
[1] | K. Aoyama, F. Kohsaka, Fixed point theorem for $\alpha$-nonexpansive mappings in Banach spaces, Nonlinear Anal.: Theory Methods Appl., 74 (2011), 4387–4391. https://doi.org/10.1016/j.na.2011.03.057 doi: 10.1016/j.na.2011.03.057 |
[2] | T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. |
[3] | R. Pant, R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Func. Anal. Opt., 38 (2017), 248–266. https://doi.org/10.1080/01630563.2016.1276075 doi: 10.1080/01630563.2016.1276075 |
[4] | A. A. Mebawondu, C. Izuchukwu, Some fixed points properties, strong and $\Delta$-convergence results for generalized $\alpha$-nonexpansive mappings in hyperbolic spaces, Adv. Fixed Point Theory, 8 (2018), 1–20. https://doi.org/10.28919/afpt/3415 doi: 10.28919/afpt/3415 |
[5] | S. Banach, Sur les opérations dans les ensembles abstraites et leurs applications, Fund. Math., 3 (1922), 133–187. |
[6] | E. Picard, Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, J. Math. Pures Appl., 6 (1980), 145–210. |
[7] | V. Berinde, Iterative approximation of fixed points, Springer-Verlag Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-72234-2 |
[8] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162 |
[9] | R. P. Agarwal, D. O. Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61. |
[10] | D. Thakur, B. S. Thakur, M. Postolache, New iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, 30 (2016), 2711–2720. https://doi.org/10.2298/FIL1610711T doi: 10.2298/FIL1610711T |
[11] | S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 1 (2013), 1–10. https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69 |
[12] | G. A. Okeke, Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications, Afr. Mat., 30 (2019), 817–835. https://doi.org/10.1007/s13370-019-00686-z doi: 10.1007/s13370-019-00686-z |
[13] | F. Gürsoy, V. Karakaya, A Picard-$S$ hybrid type iteration method for solving a differential equation with retarded argument, arXiv, 2014. https://doi.org/10.48550/arXiv.1403.2546 |
[14] | P. Lamba, A. Panwar, A Picard S* iterative algorithm for approximating fixed points of generalized $\alpha$-nonexpansive mappings, J. Math. Comput. Sci., 11 (2021), 2874–2892. https://doi.org/10.28919/jmcs/5624 doi: 10.28919/jmcs/5624 |
[15] | J. Jia, K. Shabbir, K. Ahmad, N. A. Shah, T. Botmart, Strong convergence of a new hybrid iterative scheme for nonexpensive mappings and applications, J. Funct. Spaces, 2022 (2022), 4855173. https://doi.org/10.1155/2022/4855173 doi: 10.1155/2022/4855173 |
[16] | S. Temir, Ö. Korkut, Approximating fixed points of generalized $\alpha $-nonexpansive mappings by the new iteration process, J. Math. Sci. Model., 5 (2022), 35–39. http://dx.doi.org/10.33187/jmsm.993823 doi: 10.33187/jmsm.993823 |
[17] | B. A. B. Dehaish, R. K. Alharbi, On convergence theorems for generalized alpha nonexpansive mappings in Banach spaces, J. Funct. Spaces, 2021 (2021), 1031–1050. https://doi.org/10.1155/2021/6652741 doi: 10.1155/2021/6652741 |
[18] | K. Ibrahim, J. L. Olakunle, A three steps iterative process for approximating the fixed points of multivalued generalized $\alpha$-nonexpansive mappings in uniformly convex hyperbolic spaces, Sigma J. Eng. Nat. Sci., 38 (2021), 1031–1050. |
[19] | S. Cholatis, S. Kittikorn, K. E. Chakkrid, K Wongvisarut, The generalized $\alpha $-nonexpansive mappings and related convergence theorems in hyperbolic spaces, J. Inf. Math. Sci., 11 (2019), 1–17. https://doi.org/10.26713/jims.v11i1.1147 doi: 10.26713/jims.v11i1.1147 |
[20] | U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc., 357 (2005), 89–128. https://doi.org/10.1090/S0002-9947-04-03515-9 doi: 10.1090/S0002-9947-04-03515-9 |
[21] | S. Reich, I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal.: Theory Methods Appl., 15 (1990), 537–558. https://doi.org/10.1016/0362-546X(90)90058-O doi: 10.1016/0362-546X(90)90058-O |
[22] | M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Springer Berlin, Heidelberg, 2013. https://doi.org/10.1007/978-3-662-12494-9 |
[23] | L. Leustean, A quadratic rate of asymptotic regularity for CAT (0)-spaces, J. Math. Anal. Appl., 325 (2007), 386–399. https://doi.org/10.1016/j.jmaa.2006.01.081 doi: 10.1016/j.jmaa.2006.01.081 |
[24] | S. Dhompongsa, B. Panyanak, On $\Delta$-convergence theorems in CAT (0) spaces, Comput. Math. Appl., 56 (2008), 2572–2579. https://doi.org/10.1016/j.camwa.2008.05.036 doi: 10.1016/j.camwa.2008.05.036 |
[25] | W. A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal.: Theory Methods Appl., 68 (2008), 3689–3696. https://doi.org/10.1016/j.na.2007.04.011 doi: 10.1016/j.na.2007.04.011 |
[26] | L. Leuştean, Nonexpansive iterations in uniformly convex W-hyperbolic spaces, Nonlinear Anal. Opt. Ⅰ: Nonlinear Anal., 513 (2010), 193–209. https://dx.doi.org/10.1090/conm/513/10084 doi: 10.1090/conm/513/10084 |
[27] | T. Kuczumow, An almost convergence and its applications, Ann. Univ. Mariae Curie-Skłodowska, Sect. A., 32 (1978), 79–88. |
[28] | H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380. https://doi.org/10.1090/S0002-9939-1974-0346608-8 doi: 10.1090/S0002-9939-1974-0346608-8 |
[29] | A. R. Khan, H. Fukhar-ud-din, M. A. A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012 (2012), 1–12. https://doi.org/10.1186/1687-1812-2012-54 doi: 10.1186/1687-1812-2012-54 |
[30] | M. Imdad, S. Dashputre, Fixed point approximation of Picard normal $S$-iteration process for generalized nonexpansive mappings in hyperbolic spaces, Math. Sci., 10 (2016), 131–138. https://doi.org/10.1007/s40096-016-0187-8 doi: 10.1007/s40096-016-0187-8 |
[31] | R. G. Bartle, D. R. Sherbert, Introduction to real analysis, Wiley, New York, 2000. |