Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

A mathematical model for fractal-fractional monkeypox disease and its application to real data

  • In this paper, we developed a nonlinear mathematical model for the transmission of the monkeypox virus among populations of humans and rodents under the fractal-fractional operators in the context of Atangana-Baleanu. For the theoretical analysis, the renowned theorems of fixed points, like Banach's and Krasnoselskii's types, were used to prove the existence and uniqueness of the solutions. Additionally, some results regarding the stability of the equilibrium points and the basic reproduction number were provided. In addition, the numerical schemes of the considered model were established using the Adams-Bashforth method. Our analytical findings were supported by the numerical simulations to explain the effects of changing a few sets of fractional orders and fractal dimensions. Some graphic simulations were displayed with some parameters calculated from real data to understand the behavior of the model.

    Citation: Weerawat Sudsutad, Chatthai Thaiprayoon, Jutarat Kongson, Weerapan Sae-dan. A mathematical model for fractal-fractional monkeypox disease and its application to real data[J]. AIMS Mathematics, 2024, 9(4): 8516-8563. doi: 10.3934/math.2024414

    Related Papers:

    [1] Yudan Ma, Ming Zhao, Yunfei Du . Impact of the strong Allee effect in a predator-prey model. AIMS Mathematics, 2022, 7(9): 16296-16314. doi: 10.3934/math.2022890
    [2] Chaoxiong Du, Wentao Huang . Hopf bifurcation problems near double positive equilibrium points for a class of quartic Kolmogorov model. AIMS Mathematics, 2023, 8(11): 26715-26730. doi: 10.3934/math.20231367
    [3] Yougang Wang, Anwar Zeb, Ranjit Kumar Upadhyay, A Pratap . A delayed synthetic drug transmission model with two stages of addiction and Holling Type-II functional response. AIMS Mathematics, 2021, 6(1): 1-22. doi: 10.3934/math.2021001
    [4] Jawdat Alebraheem . Asymptotic stability of deterministic and stochastic prey-predator models with prey herd immigration. AIMS Mathematics, 2025, 10(3): 4620-4640. doi: 10.3934/math.2025214
    [5] Komal Bansal, Trilok Mathur, Narinderjit Singh Sawaran Singh, Shivi Agarwal . Analysis of illegal drug transmission model using fractional delay differential equations. AIMS Mathematics, 2022, 7(10): 18173-18193. doi: 10.3934/math.20221000
    [6] Binfeng Xie, Na Zhang . Influence of fear effect on a Holling type III prey-predator system with the prey refuge. AIMS Mathematics, 2022, 7(2): 1811-1830. doi: 10.3934/math.2022104
    [7] Sahabuddin Sarwardi, Hasanur Mollah, Aeshah A. Raezah, Fahad Al Basir . Direction and stability of Hopf bifurcation in an eco-epidemic model with disease in prey and predator gestation delay using Crowley-Martin functional response. AIMS Mathematics, 2024, 9(10): 27930-27954. doi: 10.3934/math.20241356
    [8] Ruizhi Yang, Dan Jin, Wenlong Wang . A diffusive predator-prey model with generalist predator and time delay. AIMS Mathematics, 2022, 7(3): 4574-4591. doi: 10.3934/math.2022255
    [9] Yingyan Zhao, Changjin Xu, Yiya Xu, Jinting Lin, Yicheng Pang, Zixin Liu, Jianwei Shen . Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay. AIMS Mathematics, 2024, 9(11): 29883-29915. doi: 10.3934/math.20241445
    [10] Ming Wu, Hongxing Yao . Stability and bifurcation of a delayed diffusive predator-prey model affected by toxins. AIMS Mathematics, 2023, 8(9): 21943-21967. doi: 10.3934/math.20231119
  • In this paper, we developed a nonlinear mathematical model for the transmission of the monkeypox virus among populations of humans and rodents under the fractal-fractional operators in the context of Atangana-Baleanu. For the theoretical analysis, the renowned theorems of fixed points, like Banach's and Krasnoselskii's types, were used to prove the existence and uniqueness of the solutions. Additionally, some results regarding the stability of the equilibrium points and the basic reproduction number were provided. In addition, the numerical schemes of the considered model were established using the Adams-Bashforth method. Our analytical findings were supported by the numerical simulations to explain the effects of changing a few sets of fractional orders and fractal dimensions. Some graphic simulations were displayed with some parameters calculated from real data to understand the behavior of the model.



    In the last two decades, the fractional difference equations have recently received considerable attention in many fields of science and engineering, see [1,2,3,4] and the references therein. On the other hand, the q-difference equations have numerous applications in diverse fields in recent years and has gained intensive interest [5,6,7,8,9]. It is well know that the q-fractional difference equations can be used as a bridge between fractional difference equations and q-difference equations, many papers have been published on this research direction, see [10,11,12,13,14,15] for examples. We recommend the monograph [16] and the papers cited therein.

    For 0<q<1, we define the time scale Tq={qn:nZ}{0}, where Z is the set of integers. For a=qn0 and n0Z, we denote Ta=[a,)q={qia:i=0,1,2,...}.

    In [17], Abdeljawad et.al generalized the q-fractional Gronwall-type inequality in [18], they obtained the following q-fractional Gronwall-type inequality.

    Theorem 1.1 ([17]). Let α>0, u and ν be nonnegative functions and w(t) be nonnegative and nondecreasing function for t[a,)q such that w(t)M where M is a constant. If

    u(t)ν(t)+w(t)qαau(t),

    then

    u(t)ν(t)+k=1(w(t)Γq(α))kqkαaν(t). (1.1)

    Based on the above result, Abdeljawad et al. investigated the following nonlinear delay q-fractional difference system:

    {qCαax(t)=A0x(t)+A1x(τt)+f(t,x(t),x(τt)),t[a,)q,x(t)=ϕ(t),tIτ, (1.2)

    where qCαa means the Caputo fractional difference of order α(0,1), ˉIτ={τa,q1τa,q2τa,...,a}, τ=qdTq with dN0={0,1,2,...}.

    Remark 1.1. The domain of t in (1.2) is inaccurate, please see the reference [19].

    In [20], Sheng and Jiang gave the following extended form of the fractional Gronwall inequality :

    Theorem 1.2 ([20]). Suppose α>0, β>0, a(t) is a nonnegative function locally integrable on [0,T), ˜g(t), and ˉg(t) are nonnegative, nondecreasing, continuous functions defined on [0,T); ˜g(t)˜M, ˉg(t)ˉM, where ˜M and ˉM are constants. Suppose x(t) is a nonnegative and locally integrable on [0,T) with

    x(t)a(t)+˜g(t)t0(ts)α1x(s)ds+ˉg(t)t0(ts)β1x(s)ds,t[0,T).

    Then

    x(t)a(t)+t0n=1[g(t)]nnk=0Ckn[Γ(α)]nk[Γ(β)]kΓ[(nk)α+kβ](ts)(nk)α+kβ1a(s)ds, (1.3)

    where t[0,T), g(t)=˜g(t)+ˉg(t) and Ckn=n(n1)(nk+1)k!.

    Corollary 1.3 [20] Under the hypothesis of Theorem 1.2, let a(t) be a nondecreasing function on [0,T). Then

    x(t)a(t)Eγ[g(t)(Γ(α)tα+Γ(β)tβ)], (1.4)

    where γ=min{α,β}, Eγ is the Mittag-Leffler function defined by Eγ(z)=k=0zkΓ(kγ+1).

    Finite-time stability is a more practical method which is much valuable to analyze the transient behavior of nature of a system within a finite interval of time. It has been widely studied of integer differential systems. In recent decades, the finite-time stability analysis of fractional differential systems has received considerable attention, for instance [21,22,23,24,25] and the references therein. In [26], Du and Jia studied the finite-time stability of a class of nonlinear fractional delay difference systems by using a new discrete Gronwall inequality and Jensen inequality. Recently, Du and Jia in [27] obtained a criterion on finite time stability of fractional delay difference system with constant coefficients by virtue of a discrete delayed Mittag-Leffler matrix function approach. In [28], Ma and Sun investigated the finite-time stability of a class of fractional q-difference equations with time-delay by utilizing the proposed delayed q-Mittag-Leffler type matrix and generalized q-Gronwall inequality, respectively. Based on the generalized fractional (q,h)-Gronwall inequality, Du and Jia in [19] derived the finite-time stability criterion of nonlinear fractional delay (q,h)-difference systems.

    Motivated by the above works, we will extend the q-fractional Gronwall-type inequality (Theorem 1.1) to the spreading form of the q-fractional Gronwall inequality. As applications, we consider the existence and uniqueness of the solution of the following nonlinear delay q-fractional difference damped system :

    {qCαax(t)A0qCβax(t)=B0x(t)+B1x(τt)+f(t,x(t),x(τt)),t[a,b)q,x(t)=ϕ(t),qx(t)=ψ(t),tIτ, (1.5)

    where [a,b)q=[a,b)Ta, bTa, Iτ={qτa,τa,q1τa,q2τa,...,a}, τ=qdTq with dN0={0,1,2,...}, qCαa and qCβa mean the Caputo fractional difference of order α(1,2) and order β(0,1), respectively, and the constant matrices A0, B0 and B1 are of appropriate dimensions. Moreover, a novel criterion of finite-time stability criterion of (1.5) is established. We generalized the main results of [17] in this paper.

    The organization of this paper is given as follows: In Section 2, we give some notations, definitions and preliminaries. Section 3 is devoted to proving a spreading form of the q-fractional Gronwall inequality. In Section 4, the existence and uniqueness of the solution of system (1.5) are given and proved, and the finite-time stability theorem of nonlinear delay q-fractional difference damped system is obtained. In Section 5, an example is given to illustrate our theoretical result. Finally, the paper is concluded in Section 6.

    In this section, we provided some basic definitions and lemmas which are used in the sequel.

    Let f:TqR (q(0,1)), the nabla q-derivative of f is defined by Thabet et al. as follows:

    qf(t)=f(t)f(qt)(1q)t,tTq{0},

    and q-derivatives of higher order by

    nqf(t)=q(n1qf)(t),nN.

    The nabla q-integral of f has the following form

    t0f(s)qs=(1q)ti=0qif(tqi) (2.1)

    and for 0aTq

    taf(s)qs=t0f(s)qsa0f(s)qs. (2.2)

    The definition of the q-factorial function for a nonpositive integer α is given by

    (ts)αq=tαi=01stqi1stqi+α. (2.3)

    For a function f:TqR, the left q-fractional integral qαa of order α0,1,2,... and starting at 0<aTq is defined by

    qαaf(t)=1Γq(α)ta(tqs)α1qf(s)qs, (2.4)

    where

    Γq(α+1)=1qα1qΓq(α),Γq(1)=1, α>0. (2.5)

    The left q-fractional derivative qβa of order β>0 and starting at 0<aTq is defined by

    qβaf(t)=(qmaq(mβ)af)(t), (2.6)

    where m is the smallest integer greater or equal than β.

    Definition 2.1 ([11]). Let 0<αN and f:TaR. Then the Caputo left q-fractional derivative of order α of a function f is defined by

    qCαaf(t):=q(nα)anqf(t)=1Γq(nα)ta(tqs)nα1qnqf(s)qs,tTa, (2.7)

    where n=[α]+1.

    Let us now list some properties which are needed to obtain our results.

    Lemma 2.1 ([29]). Let α,β>0 and f be a function defined on (0,b). Then the following formulas hold:

    (qβaqαaf)(t)=q(α+β)af(t),0<a<t<b,
    (qαaqαaf)(t)=f(t),0<a<t<b.

    Lemma 2.2 ([11]). Let α>0 and f be defined in a suitable domain. Thus

    qαaqCαaf(t)=f(t)n1k=0(ta)kqΓq(k+1)kqf(a) (2.8)

    and if 0<α1 we have

    qαaqCαaf(t)=f(t)f(a). (2.9)

    The following identity plays a crucial role in solving the linear q-fractional equations:

    qαa(xa)μq=Γq(μ+1)Γq(α+μ+1)(xa)μ+αq,0<a<x<b, (2.10)

    where αR+ and μ(1,).

    Apply qαa on both sides of (2.10), by virtue of Lemma 2.1, one can obtain

    qαa(xa)μ+αq=Γq(α+μ+1)Γq(μ+1)(xa)μq,0<a<x<b, (2.11)

    where αR+ and μ(1,).

    By Theorem 7 in [11], for any 0<β<1, one has

    (qCβaf)(t)=(qβaf)(t)(ta)βqΓq(1β)f(a). (2.12)

    For any 1<α2, by (2.8), one has

    qαaqCαaf(t)=f(t)f(a)(ta)1qqf(a). (2.13)

    Apply qαa on both sides of (2.13), by Lemma 2.1 and (2.11), we get

    (qCαaf)(t)=(qαaf)(t)f(a)qαa(ta)0qf(a)qαa(ta)1q=(qαaf)(t)(ta)αqΓq(1α)f(a)(ta)1αqΓq(2α)qf(a). (2.14)

    In this section, we give and prove the following spreading form of generalized q-fractional Gronwall inequality, which extend a q-fractional Gronwall inequality in Theorem 1.1.

    Theorem 3.1. Let α>0 and β>0. Assume that u(t) and g(t) are nonnegative functions for t[a,T)q. Let wi(t) (i=1,2) be nonnegative and nondecreasing functions for t[a,T)q with wi(t)Mi, where Mi are positive constants (i=1,2) and

    [Γq(α)Tα(1q)α+Γq(β)Tβ(1q)β]max{M1Γq(α), M2Γq(β)}<1. (3.1)

    If

    u(t)g(t)+w1(t)qαau(t)+w2(t)qβau(t),t[a,T)q, (3.2)

    then

    u(t)g(t)+n=1w(t)nnk=0CknΓq(α)nkΓq(β)kq((nk)α+kβ)ag(t),t[a,T)q, (3.3)

    where w(t)=max{w1(t)Γq(α), w2(t)Γq(β)}.

    Proof. Define the operator

    Au(t)=w(t)ta[(tqs)α1q+(tqs)β1q]u(s)qs,t[a,T)q. (3.4)

    According to (3.2), one has

    u(t)g(t)+Au(t). (3.5)

    By (3.5) and the monotonicity of the operator A, we obtain

    u(t)n1k=0Akg(t)+Anu(t),t[a,T)q. (3.6)

    In the following, we will prove that

    Anu(t)w(t)nnk=0CknΓq(α)nkΓq(β)kq((nk)α+kβ)au(t),t[a,T)q, (3.7)

    and

    limnAnu(t)=0. (3.8)

    Obviously, the inequality (3.7) holds for n=1. Assume that (3.7) is true for n=m, that is

    Amu(t)w(t)mmk=0CkmΓq(α)mkΓq(β)kq((mk)α+kβ)au(t)=w(t)mmk=0CkmΓq(α)mkΓq(β)kΓq((mk)α+kβ)ta(tqs)(mk)α+kβ1qu(s)qs,t[a,T)q. (3.9)

    When n=m+1, by using (3.4), (3.9), (2.10) and the nondecreasing of function w(t), we get

    Am+1u(t)=A(Amu(t))

    w(t)ta[(tqs)α1q+(tqs)β1q]

    ×(w(s)mmk=0CkmΓq(α)mkΓq(β)kΓq((mk)α+kβ)sa(sqr)(mk)α+kβ1qu(r)qr)qs

    w(t)m+1tamk=0CkmΓq(α)mkΓq(β)kΓq((mk)α+kβ)[(tqs)α1q+(tqs)β1q]

    ×[sa(sqr)(mk)α+kβ1qu(r)qr]qs

    =w(t)m+1mk=0CkmΓq(α)mkΓq(β)kΓq((mk)α+kβ)[ta(tqs)α1qsa(sqr)(mk)α+kβ1qu(r)qrqs

    +ta(tqs)β1qsa(sqr)(mk)α+kβ1qu(r)qrqs]

    =w(t)m+1mk=0CkmΓq(α)mkΓq(β)kΓq((mk)α+kβ)[tatqr(tqs)α1q(sqr)(mk)α+kβ1qu(r)qrqs

    +tatqr(tqs)β1q(sqr)(mk)α+kβ1qu(r)qrqs]

    =w(t)m+1mk=0CkmΓq(α)mkΓq(β)kΓq((mk)α+kβ)

    ×(Γq(α)ta[1Γq(α)tqr(tqs)α1q(sqr)(mk)α+kβ1qqs]u(r)qr

    +Γq(β)ta[1Γq(β)tqr(tqs)β1q(sqr)(mk)α+kβ1qqs]u(r)qr)

    =w(t)m+1mk=0CkmΓq(α)mkΓq(β)kΓq((mk)α+kβ)

    ×(Γq(α)taqαqr(tqr)(mk)α+kβ1qu(r)qr

    +Γq(β)taqβqr(tqr)(mk)α+kβ1qu(r)qr)

    =w(t)m+1mk=0CkmΓq(α)mkΓq(β)kΓq((mk)α+kβ)

    ×(Γq(α)Γq((mk)α+kβ)Γq((mk+1)α+kβ)ta(tqr)(mk+1)α+kβ1qu(r)qr

    +Γq(β)Γq((mk)α+kβ)Γq((mk)α+(k+1)β)ta(tqr)(mk)α+(k+1)β1qu(r)qr)

    =w(t)m+1mk=0CkmΓq(α)mkΓq(β)k

    ×(Γq(α)q((mk+1)α+kβ)au(t)+Γq(β)q((mk)α+(k+1)β)au(t))

    =w(t)m+1mk=0CkmΓq(α)m+1kΓq(β)kq((mk+1)α+kβ)au(t)

    +w(t)m+1m+1k=1Ck1mΓq(α)m+1kΓq(β)kq((m+1k)α+kβ)au(t)

    =w(t)m+1[C0mΓq(α)m+1q((m+1)α)au(t)

    +mk=1(Ckm+Ck1m)Γq(α)m+1kΓq(β)kq((mk+1)α+kβ)au(t)

    +CmmΓq(β)m+1q((m+1)β)au(t)]

    =w(t)m+1m+1k=0Ckm+1Γq(α)m+1kΓq(β)kq((m+1k)α+kβ)au(t).

    Thus, (3.7) is proved.

    Using Stirling's formula of the q-gamma function [30], yields that

    Γq(x)=[2]1/2qΓq2(1/2)(1q)12xeθqx(1q)qx,0<θ<1,

    that is

    Γq(x)D(1q)12x,x, (3.10)

    where D=[2]1/2qΓq2(1/2). Moreover, if t>a>0 and γ>0 (γ is not a positive integer), then 1atqj<1atqγ+j for each j=0,1,..., and

    (ta)γq=tγj=01atqj1atqγ+j<tγ. (3.11)

    By w1(t)<M1 and w2(t)<M2, one has that w(t)<max{M1Γq(α), M2Γq(β)}:=M. Applying the first mean value theorem for definite integrals [31], (3.10) and (3.11), there exists a ξ[a,t]q such that

    limnAnu(t)limnu(ξ)nk=0MnCknΓq(α)nkΓq(β)kΓq((nk)α+kβ)ta(tqr)(nk)α+kβ1qqs=limnu(ξ)nk=0MnCknΓq(α)nkΓq(β)kΓq((nk)α+kβ+1)(ta)(nk)α+kβqlimnu(ξ)nk=0MnCknΓq(α)nkΓq(β)kΓq((nk)α+kβ+1)t(nk)α+kβ=limnu(ξ)nk=0MnCknΓq(α)nkΓq(β)kD(1q)12((nk)α+kβ+1)t(nk)α+kβ=limnu(ξ)1qDnk=0MnCkn[Γq(α)tα(1q)α]nk[Γq(β)tβ(1q)β]k=limnu(ξ)1qD[M(Γq(α)(1q)αtα+Γq(β)(1q)βtβ)]n.

    From (3.1), for each t[a,T)q, we have

    [M(Γq(α)(1q)αtα+Γq(β)(1q)βtβ)]n0,as n.

    Thus, Anu(t)0 as n. Let n in (3.6), by (3.8) we get

    u(t)g(t)+k=1Akg(t). (3.12)

    From (3.7) and (3.12), we obtain (3.3). This completes the proof.

    Corollary 3.2. Under the hypothesis of Theorem 3.1, let g(t) be a nondecreasing function on t[a,T)q. Then

    u(t)g(t)n=0w(t)nnk=0CknΓq(α)nkΓq(β)kΓq((nk)α+kβ+1)(ta)(nk)α+kβq (3.13)

    Proof. By (3.3), (2.10) and the assumption that g(t) is nondecreasing function for t[a,T)q, we have

    u(t)g(t)[1+n=1w(t)nnk=0CknΓq(α)nkΓq(β)kq((nk)α+kβ)a1]=g(t)[1+n=1w(t)nnk=0CknΓq(α)nkΓq(β)k1Γq((nk)α+kβ+1)(ta)(nk)α+kβq]=g(t)n=0w(t)nnk=0CknΓq(α)nkΓq(β)kΓq((nk)α+kβ+1)(ta)(nk)α+kβq.

    Throughout this paper, we make the following assumptions:

    (H1) fD(Tq×Rn×Rn,Rn) is a Lipschitz-type function. That is, for any x,y:TτaRn, there exists a positive constant L>0 such that

    f(t,y(t),y(τt))f(t,x(t),x(τt))L(y(t)x(t)+y(τt)x(τt)), (4.1)

    for t[a,T)q.

    (H2)

    f(t,0,0)=[0,0,...,0]nT. (4.2)

    (H3)

    [Γq(α)Tα(1q)α+Γq(αβ)Tαβ(1q)αβ]max{B0+B1+2LΓq(α), A0Γq(αβ)}<1. (4.3)

    Definition 4.1. The system (1.5) is finite-time stable w.r.t.{δ,ϵ,Te}, with δ<ϵ, if and only if max{ϕ,ψ}<δ implies x(t)<ϵ, t[a,Te]q=[a,Te][a,T)q.

    Theorem 4.1. Assume that (H1) and (H3) hold. Then the problem (1.5) has a unique solution.

    Proof. First we have to prove that x:TτaRm is a solution of system (1.5) if and only if

    x(t)=ϕ(a)+ψ(a)(ta)A0(ta)αβqΓq(αβ+1)ϕ(a)+A0Γq(αβ)ta(tqs)αβ1qx(s)qs+1Γq(α)ta(tqs)α1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]qs,t[a,T)q,x(t)=ϕ(t),qx(t)=ψ(t),tIτ. (4.4)

    For tIτ, it is clear that x(t)=ϕ(t) with qx(t)=ψ(t) is the solution of (1.5). For t[a,T)q, we apply qαa on both sides of (4.4) to obtain

    qαax(t)=ϕ(a)(ta)αqΓq(1α)+ψ(a)(ta)1αqΓq(2α)ϕ(a)A0(ta)βqΓq(1β)+A0qβax(t)+B0x(t)+B1x(τt)+f(t,x(t),x(τt)), (4.5)

    where (qαaqαax)(t)=x(t) and (qαaq(αβ)ax)(t)=qβax(t) (by Lemma 2.1) have been used. By using (2.12) and (2.14), we get

    qCαax(t)A0qCβax(t)=B0x(t)+B1x(τt)+f(t,x(t),x(τt)),t[a,T)q.

    Conversely, from system (1.5), we can see that x(t)=ϕ(t) and qx(t)=ψ(t) for tIτ. For t[a,T)q, we apply qαa on both sides of (1.5) to get

    qαa[qCαax(t)A0qCβax(t)]=1Γq(α)ta(tqs)α1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]qs.

    According to Lemma 2.2, we obtain

    x(t)=ϕ(a)+ψ(a)(ta)A0(ta)αβqΓq(αβ+1)ϕ(a)+A0Γq(αβ)ta(tqs)αβ1qx(s)qs+1Γq(α)ta(tqs)α1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]qs,t[a,T)q.

    Secondly, we will prove the uniqueness of solution to system (1.5). Let x and y be two solutions of system (1.5). Denote z by z(t)=x(t)y(t). Obviously, z(t)=0 for tIτ, which implies that system (1.5) has a unique solution for tIτ.

    For t[a,T)q, one has

    z(t)=A0Γq(αβ)ta(tqs)αβ1qz(s)qs+1Γq(α)ta(tqs)α1q[B0z(s)+B1z(τs)+f(s,x(s),x(τs))f(s,y(s),y(τs))]qs. (4.6)

    If tJτ={a,q1a,...,τ1a}, then τtIτ and z(τt)=0. Hence,

    z(t)=A0Γq(αβ)ta(tqs)αβ1qz(s)qs+1Γq(α)ta(tqs)α1q[B0z(s)+f(s,x(s),x(τs))f(s,y(s),y(τs))]qs,

    which implies that

    z(t)A0Γq(αβ)ta(tqs)αβ1qz(s)qs+1Γq(α)ta(tqs)α1q[B0z(s)+f(s,x(s),x(τs))f(s,y(s),y(τs))]qsA0Γq(αβ)ta(tqs)αβ1qz(s)qs+1Γq(α)ta(tqs)α1q[B0z(s)+L(z(s)+z(τs))]qs(by (H1))=A0Γq(αβ)ta(tqs)αβ1qz(s)qs+B0+LΓq(α)ta(tqs)α1qz(s)qs. (4.7)

    By applying Corollary 3.2 and (H3), we get

    z(t)0n=0wn1nk=0CknΓq(α)nkΓq(αβ)kΓq((nk)α+k(αβ)+1)(ta)(nk)α+k(αβ)q=0, (4.8)

    where w1=max{A0Γ(αβ),B0+LΓ(α)}. This implies x(t)=y(t) for tJτ.

    For t[τ1a,T)q, we obtain

    z(t)=A0Γq(αβ)ta(tqs)αβ1qz(s)qs+1Γq(α)ta(tqs)α1q[B0z(s)+f(s,x(s),x(τs))f(s,y(s),y(τs))]qs+1Γq(α)ta(tqs)α1qB1z(τs)qs. (4.9)

    Therefore,

    z(t)=A0Γq(αβ)ta(tqs)αβ1qz(s)qs+1Γq(α)ta(tqs)α1q[B0z(s)+f(s,x(s),x(τs))f(s,y(s),y(τs))]qs+1Γq(α)ta(tqs)α1qB1z(τs)qsA0Γq(αβ)ta(tqs)αβ1qz(s)qs+B0+LΓq(α)ta(tqs)α1qz(s)qs+B1+LΓq(α)ta(tqs)α1qz(τs)qs. (4.10)

    Let z(t)=maxθ[a,t]q{z(θ),z(τθ)} for t[τ1a,T)q, where [a,t]q=[a,t]Ta, it is obvious that z(t) is a increasing function. From (4.10), we obtain that

    z(t)A0Γq(αβ)ta(tqs)αβ1qz(s)qs+B0+LΓq(α)ta(tqs)α1qz(s)qs+B1+LΓq(α)ta(tqs)α1qz(s)qs=A0Γq(αβ)ta(tqs)αβ1qz(s)qs+B0+B1+2LΓq(α)ta(tqs)α1qz(s)qs. (4.11)

    By applying Corollary 3.2 and (H3) again, we get

    z(t)z(t)0n=0wn2nk=0CknΓq(α)nkΓq(αβ)kΓq((nk)α+k(αβ)+1)(ta)(nk)α+k(αβ)q=0,

    where w2=max{A0Γ(αβ),B0+B1+2LΓ(α)}. Thus, we end up with x(t)=y(t) for t[τ1a,T)q. The proof is completed.

    Theorem 4.2. Assume that the conditions (H1), (H2) and (H3) hold. Then the system (1.5) is finite-time stable if the following condition is satisfied:

    (1+(ta)+A0(ta)αβqΓq(αβ+1))n=0wn2nk=0CknΓq(α)nkΓq(αβ)kΓq((nk)α+k(αβ)+1)(ta)(nk)α+k(αβ)q<εδ, (4.12)

    where w2=max{B0+B1+2LΓq(α),A0Γq(αβ)}.

    Proof. Applying left q-fractional integral on both sides of (1.5), we obtain

    qαa(qCαax(t))A0qαa(qCβax(t))=qΔαa(B0x(t)+B1x(τt)+f(t,x(t),x(τt))). (4.13)

    By (4.12) and utilizing Lemma 2.2 we have

    x(t)=ϕ(a)+ψ(a)(ta)A0(ta)αβqΓq(αβ+1)ϕ(a)+A0Γq(αβ)ta(tqs)αβ1qx(s)qs+1Γq(α)ta(tqs)α1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]qs.

    Thus, by (H1) and (H2), we get

    x(t)ϕ+ψ(ta)+A0ϕ(ta)αβqΓq(αβ+1)+A0Γq(αβ)ta(tqs)αβ1qx(s)qs+1Γq(α)ta(tqs)α1q[B0x(s)+B1x(τs)+f(s,x(s),x(τs))]qsϕ+ψ(ta)+A0ϕ(ta)αβqΓq(αβ+1)+A0Γq(αβ)ta(tqs)αβ1qx(s)qs+1Γq(α)ta(tqs)α1q[(B0+L)x(s)+(B1+L)x(τs)]qs. (4.14)

    Let g(t)=ϕ+ψ(ta)+A0ϕ(ta)αβqΓq(αβ+1), then g is a nondecreasing function.

    Set ˉx(t)=maxθ[a,t]q{x(θ),x(τθ)}, then by (4.14) we get

    ˉx(t)g(t)+A0Γq(αβ)ta(tqs)αβ1qˉx(s)qs+B0+B1+2LΓq(α)ta(tqs)α1qˉx(s)qs=g(t)+(B0+B1+2L)qαaˉx(t)+A0q(αβ)aˉx(t). (4.15)

    Applying the result of Corollary 3.2, we have

    x(t)ˉx(t)g(t)n=0wn2nk=0CknΓq(α)nkΓq(αβ)kΓq((nk)α+k(αβ)+1)(ta)(nk)α+k(αβ)qδ(1+(ta)+A0(ta)αβqΓq(αβ+1))n=0wn2nk=0CknΓq(α)nkΓq(αβ)kΓq((nk)α+k(αβ)+1)(ta)(nk)α+k(αβ)q<ε. (4.16)

    Therefore, the system (1.5) is finite-time stable. The proof is completed.

    If xRn, then x=ni=1|xi|. If ARn×n, then the induced norm is defined as A=max1jnni=1|aij|.

    Example 5.1. Consider the nonlinear delay q-fractional differential difference system

    {qC1.8ax(t)(00.620.560)qC0.8ax(t)=(00.080.1090)x(t)+(0.15000.12)x(τt)+f(t,x(t),x(τt)),t[a,T)q,x(t)=ϕ(t),qx(t)=ψ(t),tIτ, (5.1)

    where α=1.8, β=0.8, q=0.6, a=q5=0.65, T=q1=0.61, τ=q3=0.63, x(t)=[x1(t),x2(t)]TR2,

    f(t,x(t),x(τt))=14[sinx1(t),sinx2(τt)]T15[arctanx1(τt),arctanx2(τt)]T,

    and

    ϕ(t)=[0.05,0.035]T,ψ(t)=[0.04,0.045]T,tIτ={0.69,0.68,0.67,0.66,0.65}.

    Obviously, ϕ=ψ=0.0085<0.1=δ, ϵ=1. We can see that f satisfies conditions (H1) (L=14) and (H2). We can calculate A0=0.62, B0=0.109, B1=0.15.

    When T=0.61, it is easy to check that

    [Γq(α)Tα(1q)α+Γq(αβ)Tαβ(1q)αβ]max{B0+B1+2LΓq(α),A0Γq(αβ)}=0.8992<1,

    that is, (H3) holds. By using Matlab (the pseudo-code to compute different values of Γq(σ), see [32]), when t=1[a,T)q,

    (1+(ta)+A0(ta)αβqΓq(αβ+1))n=0wn2nk=0CknΓq(α)nkΓq(αβ)kΓq((nk)α+k(αβ)+1)(ta)(nk)α+k(αβ)q8.4593<10=ϵδ.

    Thus, we obtain Te=1.

    In this paper, we introduced and proved new generalizations for q-fractional Gronwall inequality. We examined the validity and applicability of our results by considering the existence and uniqueness of solutions of nonlinear delay q-fractional difference damped system. Moreover, a novel and easy to verify sufficient conditions have been provided in this paper which are easy to determine the finite-time stability of the solutions for the considered system. Finally, an example is given to illustrate the effectiveness and feasibility of our criterion. Motivated by previous works [33,34], the possible applications of fractional q-difference in the field of stability theory will be considered in the future.

    The authors are grateful to the anonymous referees for valuable comments and suggestions that helped to improve the quality of the paper. This work is supported by Natural Science Foundation of China (11571136).

    The authors declare that there is no conflicts of interest.



    [1] Monkeypox outbreak 2022-Global, WHO. Available from: https://www.who.int/emergencies/situations/monkeypox-oubreak-2022.
    [2] I. D. Ladnyj, P. Ziegler, E. Kima, A human infection caused by monkeypox virus in basankusu territory, democratic Republic of the Congo, B. World Health Organ., 46 (1972), 593–597. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480792/
    [3] A. Jezek, S. S. Marennikova, M. Mutumbo, J. H. Nakano, K. M. Paluku, M. Szczeniowski, Human monkeypox: A study of 2510 contacts of 214 patients, J. Infect. Dis., 154 (1986), 551–555. https://doi.org/10.1093/infdis/154.4.551 doi: 10.1093/infdis/154.4.551
    [4] D. A. Kulesh, B. M. Loveless, D. Norwood, J. Garrison, C. A. Whitehouse, C. Hartmann, Monkeypox virus detection in rodents using real-time 3-minor groove binder TaqMan assays on the Roche LightCycler, Lab Invest., 84 (2004), 1200–1208. https://doi.org/10.1038/labinvest.3700143 doi: 10.1038/labinvest.3700143
    [5] Y. Li, V. A. Olson, T. Laue, M. T. Laker, I. K. Damon, Detection of monkeypox virus with real-time PCR assays, J. Clin. Virol., 36 (2006), 194–203. https://doi.org/10.1016/j.jcv.2006.03.012 doi: 10.1016/j.jcv.2006.03.012
    [6] V. A. Olson, T. Laue, M. T. Laker, I. V. Babkin, C. Drosten, S. N. Shchelkunov, et al., Real-time PCR system for detection of orthopoxviruses and simultaneous identification of smallpox virus, J. Clin. Microbiol., 42 (2004), 1940–1946. https://doi.org/10.1128/jcm.42.5.1940-1946.2004 doi: 10.1128/jcm.42.5.1940-1946.2004
    [7] J. G. Breman, D. A. Henderson, Diagnosis and management of smallpox, N. Engl. J. Med., 346 (2002), 1300–1308. https://www.nejm.org/doi/full/10.1056/NEJMra020025
    [8] J. G. Breman, R. Kalisa, M. V. Steniowski, E. Zanotto, A. I. Gromyko, I. Arita, Human monkeypox 1970–1979, B. World Health Organ., 58 (1980), 165–182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2395797/
    [9] Z. Jezek, F. Fenner, Human monkeypox, New York: Karger, 1988.
    [10] P. E. M. Fine, Z. Jezek, B. Grab, H. Dixon, The transmission potential of monkeypox virus in human populations, Int. J. Epidemiol., 17 (1988), 643–650. https://doi.org/10.1093/ije/17.3.643 doi: 10.1093/ije/17.3.643
    [11] H. Meyer, R. Ehmann, G. L. Smith, Smallpox in the post-eradication era, Viruses, 12 (2020), 138. https://doi.org/10.3390/v12020138 doi: 10.3390/v12020138
    [12] A. W. Rimoin, P. M. Mulembakani, S. C. Johnston, J. O. L. Smith, N. K. Kisalu, T. L. Kinkela, et al., Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo, Proc. Natl. Acad. Sci., 107 (2010), 16262–16267. https://doi.org/10.1073/pnas.100576910 doi: 10.1073/pnas.100576910
    [13] C. P. Bhunu, S. Mushayabasa, Modelling the transmission dynamics of pox-like infections, IAENG Int. J. Appl. Math., 41 (2011), 1–9. Available from: https://www.iaeng.org/IJAM/issues_v41/issue_2/.
    [14] S. Usman, I. I. Adamu, Modeling the transmission dynamics of the monkeypox virus infection with treatment and vaccination interventions, J. Appl. Math. Phys., 5 (2017), 2335–2353. https://doi.org/10.4236/jamp.2017.512191 doi: 10.4236/jamp.2017.512191
    [15] S. A. Somma, N. I. Akinwande, U. D. Chado, A mathematical model of monkeypox virus transmission dynamics, Ife J. Sci., 21 (2019), 195–204. https://doi.org/10.4314/ijs.v21i1.17 doi: 10.4314/ijs.v21i1.17
    [16] S. V. Bankuru, S. Kossol, W. Hou, P. Mahmoudi, J. Rychtár, D. Taylor, A game-theoretic model of monkeypox to assess vaccination strategies, PeerJ, 8 (2020), https://doi.org/10.7717/peerj.9272 doi: 10.7717/peerj.9272
    [17] O. J. Peter, S. Kumar, N. Kumari, F. A. Oguntolu, K. Oshinubi, R. Musa, Transmission dynamics of monkeypox virus: A mathematical modelling approach, Model. Earth Syst. Environ., 8 (2022), 3423–3434. https://doi.org/10.1007/s40808-021-01313-2 doi: 10.1007/s40808-021-01313-2
    [18] L. E. Depero, E. Bontempi, Comparing the spreading characteristics of monkeypox (MPX) and COVID-19: Insights from a quantitative model, Environ. Res., 235 (2023), 116521. https://doi.org/10.1016/j.envres.2023.116521 doi: 10.1016/j.envres.2023.116521
    [19] B. Liu, S. Farid, S. Ullah, M. Altanji, R. Nawaz, S. W. Teklu, Mathematical assessment of monkeypox disease with the impact of vaccination using a fractional epidemiological modeling approach, Sci. Rep., 13 (2023), 13550. https://doi.org/10.1038/s41598-023-40745-x doi: 10.1038/s41598-023-40745-x
    [20] A. Elsonbaty, W. Adel, A. Aldurayhim, A. El-Mesady, Mathematical modeling and analysis of a novel monkeypox virus spread integrating imperfect vaccination and nonlinear incidence rates, Ain Shams Eng. J., 15 (2024). https://doi.org/10.1016/j.asej.2023.102451 doi: 10.1016/j.asej.2023.102451
    [21] A. A. Kilbas, H. H. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier: Amsterdam, The Netherlands, 2006.
    [22] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [23] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–69. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [24] M. U. Rahman, Generalized fractal-fractional order problems under non-singular Mittag-Leffler kernel, Results Phys., 35 (2022), https://doi.org/10.1016/j.rinp.2022.105346 doi: 10.1016/j.rinp.2022.105346
    [25] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87-–92. https://doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202
    [26] R. Kanno, Representation of random walk in fractal space-time, Physica A, 248 (1998), 165–-175. https://doi.org/10.1016/S0378-4371(97)00422-6 doi: 10.1016/S0378-4371(97)00422-6
    [27] B. Ghanbari, K. S. Nisar, Some effective numerical techniques for chaotic systems involving fractal-fractional derivatives with different laws, Front. Phys., 8 (2020), 192. https://doi.org/10.3389/fphy.2020.00192 doi: 10.3389/fphy.2020.00192
    [28] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination? Chaos Soliton. Fract., 136 (2020), 109860. https://doi.org/10.1016/j.chaos.2020.109860 doi: 10.1016/j.chaos.2020.109860
    [29] M. Arfan, H. Alrabaiah, M. ur Rahman, Y. L. Sun, A. S. Hashim, B. A. Pansera, et al., Investigation of fractal-fractional order model of COVID-19 in Pakistan under Atangana-Baleanu Caputo (ABC) derivative, Results Phys., 24 (2021), 104046. https://doi.org/10.1016/j.rinp.2021.104046 doi: 10.1016/j.rinp.2021.104046
    [30] J. F. Gomez-Aguilar, T. Cordova-Fraga, T. Abdeljawad, A. Khan, H. Khan, Analysis of fractal-fractional malaria transmission model, Fractals, 28 (2020), 2040041. https://doi.org/10.1142/S0218348X20400411 doi: 10.1142/S0218348X20400411
    [31] M. Farman, A. Akgül, M. T. Tekin, M. M. Akram, A. Ahmad, E. E. Mahmoud, et al., Fractal fractional-order derivative for HIV/AIDS model with Mittag-Leffler kernel, Alex. Eng. J., 61 (2022), 10965–10980. https://doi.org/10.1016/j.aej.2022.04.030 doi: 10.1016/j.aej.2022.04.030
    [32] E. Addai, A. Adeniji, O. J. Peter, J. O. Agbaje, K. Oshinubi, Dynamics of age-structure smoking models with government intervention coverage under fractal-fractional order derivatives, Fractal. Fract., 7 (2023), 370. https://doi.org/10.3390/fractalfract7050370 doi: 10.3390/fractalfract7050370
    [33] N. Zhang, E. Addai, L. Zhang, M. Ngungu, E. Marinda, J. K. K. Asamoah, Fractional modeling and numerical simulation for unfolding marburg-monkeypox virus co-infection transmission, Fractals, 31 (2023), 2350086. https://doi.org/10.1142/S0218348X2350086X doi: 10.1142/S0218348X2350086X
    [34] E. Addai, A. Adeniji, M. Ngungu, G. K. Tawiah, E. Marinda, J. K. K. Asamoah, et al., A nonlinear fractional epidemic model for the Marburg virus transmission with public health education, Sci. Rep., 13 (2023), 19292. https://doi.org/10.1038/s41598-023-46127-7 doi: 10.1038/s41598-023-46127-7
    [35] H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, T. Sitthiwirattham, A study on dynamics of CD4+ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth scheme and Newton polynomials, Mathematics, 10 (2022), 1366. https://doi.org/10.3390/math10091366 doi: 10.3390/math10091366
    [36] A. Atangana, S. I. Araz, New numerical scheme with Newton polynomial: Theory, methods, and applications, 1 Eds, Elsevier, 2021. https://doi.org/10.1016/C2020-0-02711-8
    [37] V. S. Erturk, P. Kumar, Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives, Chaos Soliton. Fract., 139 (2020), 110280, 1–9. https://doi.org/10.1016/j.chaos.2020.110280 doi: 10.1016/j.chaos.2020.110280
    [38] A. El. Mesady, A. Elsonbaty, W. Adel, On nonlinear dynamics of a fractional order monkeypox virus model, Chaos Soliton. Fract., 164 (2022), 112716. https://doi.org/10.1016/j.chaos.2022.112716 doi: 10.1016/j.chaos.2022.112716
    [39] M. A. Qurashi, S. Rashid, A. M. Alshehri, F. Jarad, F. Safdar, New numerical dynamics of the fractional monkeypox virus model transmission pertaining to nonsingular kernels, Math. Biosci. Eng., 20 (2022), 40236. https://doi.org/10.3934/mbe.2023019 doi: 10.3934/mbe.2023019
    [40] O. J. Peter, F. A. Oguntolu, M. M. Ojo, A. O. Oyeniyi, R. Jan, I. Khan, Fractional order mathematical model of monkeypox transmission dynamics, Phys. Scr., 97 (2022), 084005. https://doi.org/10.1088/1402-4896/ac7ebc doi: 10.1088/1402-4896/ac7ebc
    [41] A. Atangana, A. Akgu, K. M. Owolabi, Analysis of fractal fractional differential equations, Alex. Eng. J., 59 (2020), 1117–1134. https://doi.org/10.1016/j.aej.2020.01.005 doi: 10.1016/j.aej.2020.01.005
    [42] S. Qureshi, A. Atangana, A. Shaikh, Strange chaotic attractors under fractal fractional operators using newly proposed numerical methods, Eur. Phys. J. Plus, 134 (2019), https://doi.org/10.1140/epjp/i2019-13003-7 doi: 10.1140/epjp/i2019-13003-7
    [43] A. Granas, J. Dugundji, Fixed point theory, Springer: New York, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [44] M. A. Krasnosel'skii, Two remarks on the method of successive approximations, Usp. Mat. Nauk., 10 (1955), 123–127.
    [45] G. O. Fosu, E. Akweittey, A. S. Albert, Next-generation matrices and basic reproductive numbers for all phases of the coronavirus disease, Open J. Math. Sci., 4 (2020), 261–272. https://doi.org/10.30538/oms2020.0117 doi: 10.30538/oms2020.0117
    [46] C. P. Bhunu, W. Garira, G. Magombedze, Mathematical analysis of a two strain HIV/AIDS model with antiretroviral treatment, Acta Biotheor., 57 (2009), 361–381. https://doi.org/10.1007/s10441-009-9080-2 doi: 10.1007/s10441-009-9080-2
    [47] M. R. Odom, R. C. Hendrickson, E. J. Lefkowitz, Poxvirus protein evolution: Family wide assessment of possible horizontal gene transfer events, Virus Res., 144 (2009), 233–249. https://doi.org/10.1016/j.virusres.2009.05.006 doi: 10.1016/j.virusres.2009.05.006
    [48] M. Ngungu, E. Addai, A. Adeniji, U. M. Adam, K. Oshinubi, Mathematical epidemiological modeling and analysis of monkeypox dynamism with non-pharmaceutical intervention using real data from United Kingdom, Front. Public Health., 11 (2023), 1101436. https://doi.org/10.3389/fpubh.2023.1101436 doi: 10.3389/fpubh.2023.1101436
    [49] Monkeypox cases confirmed in England-Latest updates, UK Health Security Agency, 2022. Available from: https://www.gov.uk/government/news/monkeypox-casesconfirmed-in-england-latest-updates (accessed August 29, 2022).
  • This article has been cited by:

    1. Wellington F. da Silva, Ricardo B. Viana, Naiane S. Morais, Thalles G. Costa, Rodrigo L. Vancini, Gustavo C. T. Costa, Marilia S. Andrade, Claudio A. B. de Lira, Acute effects of exergame-based calisthenics versus traditional calisthenics on state-anxiety levels in young adult men: a randomized trial, 2022, 18, 1824-7490, 715, 10.1007/s11332-021-00841-9
    2. Myungjin Jung, Emily Frith, Minsoo Kang, Paul D. Loprinzi, Effects of Acute Exercise on Verbal, Mathematical, and Spatial Insight Creativity, 2023, 5, 2096-6709, 87, 10.1007/s42978-021-00158-6
    3. Sedat Sen, Süreyya Yörük, A Reliability Generalization Meta‐Analysis of the Kaufman Domains of Creativity Scale, 2023, 0022-0175, 10.1002/jocb.620
    4. Ramón Romance, Adriana Nielsen-Rodríguez, Rui Sousa Mendes, Juan Carlos Dobado-Castañeda, Gonçalo Dias, The influence of physical activity on the creativity of 10 and 11-year-old school children, 2023, 48, 18711871, 101295, 10.1016/j.tsc.2023.101295
    5. Petra J. Luteijn, Inge S. M. van der Wurff, Piet van Tuijl, Amika S. Singh, Hans H. C. M. Savelberg, Renate H. M. de Groot, The Effect of Standing Versus Sitting on Creativity in Adolescents—A Crossover Randomized Trial: The PHIT2LEARN Study, 2023, 17, 1751-2271, 209, 10.1111/mbe.12381
    6. Myungjin Jung, Matthew B. Pontifex, Charles H. Hillman, Minsoo Kang, Michelle W. Voss, Kirk I. Erickson, Paul D. Loprinzi, A mechanistic understanding of cognitive performance deficits concurrent with vigorous intensity exercise, 2024, 180, 02782626, 106208, 10.1016/j.bandc.2024.106208
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1308) PDF downloads(127) Cited by(6)

Figures and Tables

Figures(17)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog