Research article Special Issues

A mathematical model for fractal-fractional monkeypox disease and its application to real data

  • Received: 25 December 2023 Revised: 13 February 2024 Accepted: 19 February 2024 Published: 28 February 2024
  • MSC : 26A33, 34A08, 65L09, 92D25, 92D30

  • In this paper, we developed a nonlinear mathematical model for the transmission of the monkeypox virus among populations of humans and rodents under the fractal-fractional operators in the context of Atangana-Baleanu. For the theoretical analysis, the renowned theorems of fixed points, like Banach's and Krasnoselskii's types, were used to prove the existence and uniqueness of the solutions. Additionally, some results regarding the stability of the equilibrium points and the basic reproduction number were provided. In addition, the numerical schemes of the considered model were established using the Adams-Bashforth method. Our analytical findings were supported by the numerical simulations to explain the effects of changing a few sets of fractional orders and fractal dimensions. Some graphic simulations were displayed with some parameters calculated from real data to understand the behavior of the model.

    Citation: Weerawat Sudsutad, Chatthai Thaiprayoon, Jutarat Kongson, Weerapan Sae-dan. A mathematical model for fractal-fractional monkeypox disease and its application to real data[J]. AIMS Mathematics, 2024, 9(4): 8516-8563. doi: 10.3934/math.2024414

    Related Papers:

  • In this paper, we developed a nonlinear mathematical model for the transmission of the monkeypox virus among populations of humans and rodents under the fractal-fractional operators in the context of Atangana-Baleanu. For the theoretical analysis, the renowned theorems of fixed points, like Banach's and Krasnoselskii's types, were used to prove the existence and uniqueness of the solutions. Additionally, some results regarding the stability of the equilibrium points and the basic reproduction number were provided. In addition, the numerical schemes of the considered model were established using the Adams-Bashforth method. Our analytical findings were supported by the numerical simulations to explain the effects of changing a few sets of fractional orders and fractal dimensions. Some graphic simulations were displayed with some parameters calculated from real data to understand the behavior of the model.



    加载中


    [1] Monkeypox outbreak 2022-Global, WHO. Available from: https://www.who.int/emergencies/situations/monkeypox-oubreak-2022.
    [2] I. D. Ladnyj, P. Ziegler, E. Kima, A human infection caused by monkeypox virus in basankusu territory, democratic Republic of the Congo, B. World Health Organ., 46 (1972), 593–597. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480792/
    [3] A. Jezek, S. S. Marennikova, M. Mutumbo, J. H. Nakano, K. M. Paluku, M. Szczeniowski, Human monkeypox: A study of 2510 contacts of 214 patients, J. Infect. Dis., 154 (1986), 551–555. https://doi.org/10.1093/infdis/154.4.551 doi: 10.1093/infdis/154.4.551
    [4] D. A. Kulesh, B. M. Loveless, D. Norwood, J. Garrison, C. A. Whitehouse, C. Hartmann, Monkeypox virus detection in rodents using real-time $3^{\prime}$-minor groove binder TaqMan assays on the Roche LightCycler, Lab Invest., 84 (2004), 1200–1208. https://doi.org/10.1038/labinvest.3700143 doi: 10.1038/labinvest.3700143
    [5] Y. Li, V. A. Olson, T. Laue, M. T. Laker, I. K. Damon, Detection of monkeypox virus with real-time PCR assays, J. Clin. Virol., 36 (2006), 194–203. https://doi.org/10.1016/j.jcv.2006.03.012 doi: 10.1016/j.jcv.2006.03.012
    [6] V. A. Olson, T. Laue, M. T. Laker, I. V. Babkin, C. Drosten, S. N. Shchelkunov, et al., Real-time PCR system for detection of orthopoxviruses and simultaneous identification of smallpox virus, J. Clin. Microbiol., 42 (2004), 1940–1946. https://doi.org/10.1128/jcm.42.5.1940-1946.2004 doi: 10.1128/jcm.42.5.1940-1946.2004
    [7] J. G. Breman, D. A. Henderson, Diagnosis and management of smallpox, N. Engl. J. Med., 346 (2002), 1300–1308. https://www.nejm.org/doi/full/10.1056/NEJMra020025
    [8] J. G. Breman, R. Kalisa, M. V. Steniowski, E. Zanotto, A. I. Gromyko, I. Arita, Human monkeypox 1970–1979, B. World Health Organ., 58 (1980), 165–182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2395797/
    [9] Z. Jezek, F. Fenner, Human monkeypox, New York: Karger, 1988.
    [10] P. E. M. Fine, Z. Jezek, B. Grab, H. Dixon, The transmission potential of monkeypox virus in human populations, Int. J. Epidemiol., 17 (1988), 643–650. https://doi.org/10.1093/ije/17.3.643 doi: 10.1093/ije/17.3.643
    [11] H. Meyer, R. Ehmann, G. L. Smith, Smallpox in the post-eradication era, Viruses, 12 (2020), 138. https://doi.org/10.3390/v12020138 doi: 10.3390/v12020138
    [12] A. W. Rimoin, P. M. Mulembakani, S. C. Johnston, J. O. L. Smith, N. K. Kisalu, T. L. Kinkela, et al., Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo, Proc. Natl. Acad. Sci., 107 (2010), 16262–16267. https://doi.org/10.1073/pnas.100576910 doi: 10.1073/pnas.100576910
    [13] C. P. Bhunu, S. Mushayabasa, Modelling the transmission dynamics of pox-like infections, IAENG Int. J. Appl. Math., 41 (2011), 1–9. Available from: https://www.iaeng.org/IJAM/issues_v41/issue_2/.
    [14] S. Usman, I. I. Adamu, Modeling the transmission dynamics of the monkeypox virus infection with treatment and vaccination interventions, J. Appl. Math. Phys., 5 (2017), 2335–2353. https://doi.org/10.4236/jamp.2017.512191 doi: 10.4236/jamp.2017.512191
    [15] S. A. Somma, N. I. Akinwande, U. D. Chado, A mathematical model of monkeypox virus transmission dynamics, Ife J. Sci., 21 (2019), 195–204. https://doi.org/10.4314/ijs.v21i1.17 doi: 10.4314/ijs.v21i1.17
    [16] S. V. Bankuru, S. Kossol, W. Hou, P. Mahmoudi, J. Rychtár, D. Taylor, A game-theoretic model of monkeypox to assess vaccination strategies, PeerJ, 8 (2020), https://doi.org/10.7717/peerj.9272 doi: 10.7717/peerj.9272
    [17] O. J. Peter, S. Kumar, N. Kumari, F. A. Oguntolu, K. Oshinubi, R. Musa, Transmission dynamics of monkeypox virus: A mathematical modelling approach, Model. Earth Syst. Environ., 8 (2022), 3423–3434. https://doi.org/10.1007/s40808-021-01313-2 doi: 10.1007/s40808-021-01313-2
    [18] L. E. Depero, E. Bontempi, Comparing the spreading characteristics of monkeypox (MPX) and COVID-19: Insights from a quantitative model, Environ. Res., 235 (2023), 116521. https://doi.org/10.1016/j.envres.2023.116521 doi: 10.1016/j.envres.2023.116521
    [19] B. Liu, S. Farid, S. Ullah, M. Altanji, R. Nawaz, S. W. Teklu, Mathematical assessment of monkeypox disease with the impact of vaccination using a fractional epidemiological modeling approach, Sci. Rep., 13 (2023), 13550. https://doi.org/10.1038/s41598-023-40745-x doi: 10.1038/s41598-023-40745-x
    [20] A. Elsonbaty, W. Adel, A. Aldurayhim, A. El-Mesady, Mathematical modeling and analysis of a novel monkeypox virus spread integrating imperfect vaccination and nonlinear incidence rates, Ain Shams Eng. J., 15 (2024). https://doi.org/10.1016/j.asej.2023.102451 doi: 10.1016/j.asej.2023.102451
    [21] A. A. Kilbas, H. H. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier: Amsterdam, The Netherlands, 2006.
    [22] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [23] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–69. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [24] M. U. Rahman, Generalized fractal-fractional order problems under non-singular Mittag-Leffler kernel, Results Phys., 35 (2022), https://doi.org/10.1016/j.rinp.2022.105346 doi: 10.1016/j.rinp.2022.105346
    [25] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87-–92. https://doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202
    [26] R. Kanno, Representation of random walk in fractal space-time, Physica A, 248 (1998), 165–-175. https://doi.org/10.1016/S0378-4371(97)00422-6 doi: 10.1016/S0378-4371(97)00422-6
    [27] B. Ghanbari, K. S. Nisar, Some effective numerical techniques for chaotic systems involving fractal-fractional derivatives with different laws, Front. Phys., 8 (2020), 192. https://doi.org/10.3389/fphy.2020.00192 doi: 10.3389/fphy.2020.00192
    [28] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination? Chaos Soliton. Fract., 136 (2020), 109860. https://doi.org/10.1016/j.chaos.2020.109860 doi: 10.1016/j.chaos.2020.109860
    [29] M. Arfan, H. Alrabaiah, M. ur Rahman, Y. L. Sun, A. S. Hashim, B. A. Pansera, et al., Investigation of fractal-fractional order model of COVID-19 in Pakistan under Atangana-Baleanu Caputo (ABC) derivative, Results Phys., 24 (2021), 104046. https://doi.org/10.1016/j.rinp.2021.104046 doi: 10.1016/j.rinp.2021.104046
    [30] J. F. Gomez-Aguilar, T. Cordova-Fraga, T. Abdeljawad, A. Khan, H. Khan, Analysis of fractal-fractional malaria transmission model, Fractals, 28 (2020), 2040041. https://doi.org/10.1142/S0218348X20400411 doi: 10.1142/S0218348X20400411
    [31] M. Farman, A. Akgül, M. T. Tekin, M. M. Akram, A. Ahmad, E. E. Mahmoud, et al., Fractal fractional-order derivative for HIV/AIDS model with Mittag-Leffler kernel, Alex. Eng. J., 61 (2022), 10965–10980. https://doi.org/10.1016/j.aej.2022.04.030 doi: 10.1016/j.aej.2022.04.030
    [32] E. Addai, A. Adeniji, O. J. Peter, J. O. Agbaje, K. Oshinubi, Dynamics of age-structure smoking models with government intervention coverage under fractal-fractional order derivatives, Fractal. Fract., 7 (2023), 370. https://doi.org/10.3390/fractalfract7050370 doi: 10.3390/fractalfract7050370
    [33] N. Zhang, E. Addai, L. Zhang, M. Ngungu, E. Marinda, J. K. K. Asamoah, Fractional modeling and numerical simulation for unfolding marburg-monkeypox virus co-infection transmission, Fractals, 31 (2023), 2350086. https://doi.org/10.1142/S0218348X2350086X doi: 10.1142/S0218348X2350086X
    [34] E. Addai, A. Adeniji, M. Ngungu, G. K. Tawiah, E. Marinda, J. K. K. Asamoah, et al., A nonlinear fractional epidemic model for the Marburg virus transmission with public health education, Sci. Rep., 13 (2023), 19292. https://doi.org/10.1038/s41598-023-46127-7 doi: 10.1038/s41598-023-46127-7
    [35] H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, T. Sitthiwirattham, A study on dynamics of CD$4^+$ T-cells under the effect of HIV-$1$ infection based on a mathematical fractal-fractional model via the Adams-Bashforth scheme and Newton polynomials, Mathematics, 10 (2022), 1366. https://doi.org/10.3390/math10091366 doi: 10.3390/math10091366
    [36] A. Atangana, S. I. Araz, New numerical scheme with Newton polynomial: Theory, methods, and applications, 1 Eds, Elsevier, 2021. https://doi.org/10.1016/C2020-0-02711-8
    [37] V. S. Erturk, P. Kumar, Solution of a COVID-$19$ model via new generalized Caputo-type fractional derivatives, Chaos Soliton. Fract., 139 (2020), 110280, 1–9. https://doi.org/10.1016/j.chaos.2020.110280 doi: 10.1016/j.chaos.2020.110280
    [38] A. El. Mesady, A. Elsonbaty, W. Adel, On nonlinear dynamics of a fractional order monkeypox virus model, Chaos Soliton. Fract., 164 (2022), 112716. https://doi.org/10.1016/j.chaos.2022.112716 doi: 10.1016/j.chaos.2022.112716
    [39] M. A. Qurashi, S. Rashid, A. M. Alshehri, F. Jarad, F. Safdar, New numerical dynamics of the fractional monkeypox virus model transmission pertaining to nonsingular kernels, Math. Biosci. Eng., 20 (2022), 40236. https://doi.org/10.3934/mbe.2023019 doi: 10.3934/mbe.2023019
    [40] O. J. Peter, F. A. Oguntolu, M. M. Ojo, A. O. Oyeniyi, R. Jan, I. Khan, Fractional order mathematical model of monkeypox transmission dynamics, Phys. Scr., 97 (2022), 084005. https://doi.org/10.1088/1402-4896/ac7ebc doi: 10.1088/1402-4896/ac7ebc
    [41] A. Atangana, A. Akgu, K. M. Owolabi, Analysis of fractal fractional differential equations, Alex. Eng. J., 59 (2020), 1117–1134. https://doi.org/10.1016/j.aej.2020.01.005 doi: 10.1016/j.aej.2020.01.005
    [42] S. Qureshi, A. Atangana, A. Shaikh, Strange chaotic attractors under fractal fractional operators using newly proposed numerical methods, Eur. Phys. J. Plus, 134 (2019), https://doi.org/10.1140/epjp/i2019-13003-7 doi: 10.1140/epjp/i2019-13003-7
    [43] A. Granas, J. Dugundji, Fixed point theory, Springer: New York, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [44] M. A. Krasnosel'skii, Two remarks on the method of successive approximations, Usp. Mat. Nauk., 10 (1955), 123–127.
    [45] G. O. Fosu, E. Akweittey, A. S. Albert, Next-generation matrices and basic reproductive numbers for all phases of the coronavirus disease, Open J. Math. Sci., 4 (2020), 261–272. https://doi.org/10.30538/oms2020.0117 doi: 10.30538/oms2020.0117
    [46] C. P. Bhunu, W. Garira, G. Magombedze, Mathematical analysis of a two strain HIV/AIDS model with antiretroviral treatment, Acta Biotheor., 57 (2009), 361–381. https://doi.org/10.1007/s10441-009-9080-2 doi: 10.1007/s10441-009-9080-2
    [47] M. R. Odom, R. C. Hendrickson, E. J. Lefkowitz, Poxvirus protein evolution: Family wide assessment of possible horizontal gene transfer events, Virus Res., 144 (2009), 233–249. https://doi.org/10.1016/j.virusres.2009.05.006 doi: 10.1016/j.virusres.2009.05.006
    [48] M. Ngungu, E. Addai, A. Adeniji, U. M. Adam, K. Oshinubi, Mathematical epidemiological modeling and analysis of monkeypox dynamism with non-pharmaceutical intervention using real data from United Kingdom, Front. Public Health., 11 (2023), 1101436. https://doi.org/10.3389/fpubh.2023.1101436 doi: 10.3389/fpubh.2023.1101436
    [49] Monkeypox cases confirmed in England-Latest updates, UK Health Security Agency, 2022. Available from: https://www.gov.uk/government/news/monkeypox-casesconfirmed-in-england-latest-updates (accessed August 29, 2022).
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(889) PDF downloads(112) Cited by(2)

Article outline

Figures and Tables

Figures(17)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog