L(U1), L(U2) | Frequency |
(1, 4) | 4 |
(2, 2) | 4 |
(2, 4) | 4(p+q-6) |
(4, 4) | 2(p-3)(q-3) |
The Kolmogorov model is a class of significant ecological models and is initially introduced to describe the interaction between two species occupying the same ecological habitat. Limit cycle bifurcation problem is close to Hilbertis 16th problem. In this paper, we focus on investigating bifurcation of limit cycle for a class of quartic Kolmogorov model with two positive equilibrium points. Using the singular values method, we obtain the Lyapunov constants for each positive equilibrium point and investigate their limit cycle bifurcations behavior. Furthermore, based on the analysis of their Lyapunov constants' structure and Hopf bifurcation, we give the condition that each one positive equilibrium point of studied model can bifurcate 5 limit cycles, which include 3 stable limit cycles.
Citation: Chaoxiong Du, Wentao Huang. Hopf bifurcation problems near double positive equilibrium points for a class of quartic Kolmogorov model[J]. AIMS Mathematics, 2023, 8(11): 26715-26730. doi: 10.3934/math.20231367
[1] | Usman Babar, Haidar Ali, Shahid Hussain Arshad, Umber Sheikh . Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Mathematics, 2020, 5(2): 1562-1587. doi: 10.3934/math.2020107 |
[2] | Ali N. A. Koam, Ali Ahmad, Azeem Haider, Moin A. Ansari . Computation of eccentric topological indices of zero-divisor graphs based on their edges. AIMS Mathematics, 2022, 7(7): 11509-11518. doi: 10.3934/math.2022641 |
[3] | R. Abu-Gdairi, A. A. El-Atik, M. K. El-Bably . Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data. AIMS Mathematics, 2023, 8(11): 26945-26967. doi: 10.3934/math.20231379 |
[4] | Sadik Delen, Ismail Naci Cangul . Effect of edge and vertex addition on Albertson and Bell indices. AIMS Mathematics, 2021, 6(1): 925-937. doi: 10.3934/math.2021055 |
[5] | Sumiya Nasir, Nadeem ul Hassan Awan, Fozia Bashir Farooq, Saima Parveen . Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling. AIMS Mathematics, 2022, 7(7): 11829-11850. doi: 10.3934/math.2022660 |
[6] | Wei Gao, Zahid Iqbal, Shehnaz Akhter, Muhammad Ishaq, Adnan Aslam . On irregularity descriptors of derived graphs. AIMS Mathematics, 2020, 5(5): 4085-4107. doi: 10.3934/math.2020262 |
[7] | Chenxu Yang, Meng Ji, Kinkar Chandra Das, Yaping Mao . Extreme graphs on the Sombor indices. AIMS Mathematics, 2022, 7(10): 19126-19146. doi: 10.3934/math.20221050 |
[8] | Edil D. Molina, José M. Rodríguez-García, José M. Sigarreta, Sergio J. Torralbas Fitz . On the Gutman-Milovanović index and chemical applications. AIMS Mathematics, 2025, 10(2): 1998-2020. doi: 10.3934/math.2025094 |
[9] | Fawaz E. Alsaadi, Faisal Ali, Imran Khalid, Masood Ur Rehman, Muhammad Salman, Madini Obad Alassafi, Jinde Cao . Quantifying some distance topological properties of the non-zero component graph. AIMS Mathematics, 2021, 6(4): 3512-3524. doi: 10.3934/math.2021209 |
[10] | Zhenhua Su, Zikai Tang . Extremal unicyclic and bicyclic graphs of the Euler Sombor index. AIMS Mathematics, 2025, 10(3): 6338-6354. doi: 10.3934/math.2025289 |
The Kolmogorov model is a class of significant ecological models and is initially introduced to describe the interaction between two species occupying the same ecological habitat. Limit cycle bifurcation problem is close to Hilbertis 16th problem. In this paper, we focus on investigating bifurcation of limit cycle for a class of quartic Kolmogorov model with two positive equilibrium points. Using the singular values method, we obtain the Lyapunov constants for each positive equilibrium point and investigate their limit cycle bifurcations behavior. Furthermore, based on the analysis of their Lyapunov constants' structure and Hopf bifurcation, we give the condition that each one positive equilibrium point of studied model can bifurcate 5 limit cycles, which include 3 stable limit cycles.
Since molecules and molecular compounds are used to generate molecular graphs. Any graph that simulates some molecular structure can use a topological index as a mathematical formula [1]. Topological indices play a significant role in chemistry, pharmacology, etc., [2]. A molecular graph, whose vertices and edges are represented by atoms and chemical bonds, respectively, illustrates the constructional outcome of a chemical compound in graph theory form. Cheminformatics, a field shared by information science, chemistry and mathematics, has recently gained notoriety. This new topic discusses the connection between QSAR and QSPR, which is used to investigate (with a given level of accuracy) the theoretical and biological activities of specific chemical compounds [3]. For quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), in which the physicochemical characteristics of molecules are correlated with their chemical structure, a topological index (TI) is a real number associated with chemical structures via their hydrogen-depleted graph [4,5,6].
Chemical graph theory is a newly developed area of mathematical chemistry that combines graph theory with chemistry. The main objective of chemical graph theory is to acknowledge the structural effects of a molecular graph [7]. The molecules and molecular compounds aid in the construction of a molecular graph. Topological descriptors, which are typically graph invariants, are numerical characteristics of a graph that describe its topology [8]. The certain physiochemical characteristics of some chemical compounds, such as their boiling point, strain energy, and stability are correlated by degree-based topological indices [9].
Chemical graph theory has many applications in many areas of life, including computer science, materials science, drug design, chemistry, biological networks, and electrical networks. For this reason, academics are currently very interested in this theory [10,11]. The numerical values attached to a simple, finite graph that represent its structure are called topological indices [12]. The multiplicative Zagreb indices for mathematical features, connection indices and applications see in [13,14,15,16,17,18,19,20]. In this study, a novel method for computing the topological indices of two different chemical networks is presented. The mathematical properties of molecular structure descriptors, particularly those that depend on graph degrees, have been examined in our research. We derive neighborhood multiplicative topological indices and concise mathematical analysis for product of graphs (L) and tetrahedral diamond lattices (Ω). The fifth multiplicative Zagreb index, the general fifth-multiplicative Zagreb index, the fifth-multiplicative hyper-Zagreb index, the fifth-multiplicative product connectivity index, the fifth-multiplicative sum connectivity index, the fifth-multiplicative geometric-arithmetic index, the fifth-multiplicative harmonic index, and the fifth-multiplicative redefined Zagreb index are the topological indices that are taken into consideration. In this paper, we consider G=(V,E) to be a simple, connected and finite graph contains vertices (atoms) atoms and edges (chemical bonds linking these atoms), for notation referee to [21].
In 2017, the new neighborhood degree-based multiplicative topological indices were introduced by V. R. Kulli in [22]. Let §1 and §2 denote the fifth neighborhood multiplicative M-Zagreb index defined as:
§1(G)=∏U1U2∈E(G)(L(U1)+L(U2))and§2(G)=∏U1U2∈E(G)L(U1)L(U2). | (2.1) |
Let §3 and §5 denote the general fifth multiplicative Zagreb index that are defined as:
§3(G)=∏U1U2∈E(G)[L(U1)+L(U2)]αand§5(G)=∏U1U2∈E(G)[L(U1)L(U2)]α, | (2.2) |
where α is a real number.
The fifth multiplicative hyper-Zagreb index is denoted by §4 and §6 defined as:
§4(G)=∏U1U2∈E(G)[L(U1)+L(U2)]2and§6(G)=∏U1U2∈E(G)[L(U1)L(U2)]2. | (2.3) |
The fifth multiplicative product connectivity index §8 is defined as:
§8(G)=∏U1U2∈E(G)1√L(U1)L(U2). | (2.4) |
The fifth multiplicative sum-connectivity index of a graph G is defined as:
§9(G)=∏U1U2∈E(G)1√L(U1)+L(U2) | (2.5) |
The fifth multiplicative geometric-arithmetic index §10 of a graph G and it is defined as:
§10(G)=∏U1U2∈E(G)2√L(U1)L(U2)√L(U1)+L(U2). | (2.6) |
Inspired by Kulli, Sarkar et al. [23] introduced the fifth multiplicative product connectivity index of first kind §7, the fifth multiplicative harmonic index §11 and the fifth multiplicative redefined Zagreb index §12, respectively defined as:
§7(G)=∏U1U2∈E(G)√L(U1)L(U2), | (2.7) |
§11(G)=∏U1U2∈E(G)2√L(U1)+L(U2), | (2.8) |
§12(G)=∏U1U2∈E(G)L(U1)L(U2)[(L(U1)+L(U2]. | (2.9) |
For any two graphs L and M, the tensor product of the graphs L and M is interpreted as L⊗M. This product is also known as categorical product of graphs defined in [24,25]. The vertex set of L⊗M is denoted by V (L)×V (M). For any integers p and q, the tensor product Lp and Lq is described by Lp⊗Lq. This graph contains a.b number of vertices with vertex set
{(t1,t2):1≤t1≤q, 1≤t2≤p}, |
and edge between (t1, t2) and (t3, t4)exists if and only if:
|t1−t3|−|t2−t4|=1. |
The graph Lp⊗Lq is known as a L with vertex cardinality pq. The metric dimension of the categorial product of graphs is determined in [26] and edge irregular reflexive labeling of categorical product of two paths is determined in [27]. This shows the importance of this product in different areas. Ahmad [28] determined the upper bounds of irregularity measures of categorical product of two connected graphs. The edge partition of graph Lp⊗Lq based on the degree of end vertices is given in Table 1. This edge partition is also given in [29]. For more understanding we depicted L9⊗L10 in Figure 1.
L(U1), L(U2) | Frequency |
(1, 4) | 4 |
(2, 2) | 4 |
(2, 4) | 4(p+q-6) |
(4, 4) | 2(p-3)(q-3) |
Theorem 3.1. Let G be a tensor product of two paths. Then the fifth neighborhood multiplicative M-Zagreb indices for G are:
§1(G)=122880(p2q+pq2−3p2−3q2−12pq+27p+27q−54), |
§2(G)=262144(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Proof. From the definitions of §1(G), §2(G) and Table 1, we have
§1(G)=|P(1,4)|(1+4)×|P(2,2)|(2+2)×|P(2,4)|(2+4)×|P(4,4)|(4+4)=4(5)×4(4)×4(p+q−6)(6)×2(p−3)(q−3)(8)=20×16×24(p+q−6)×16(p−3)(q−3)=122880(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Similarly,
§2(G)=|P(1,4)|(4)×|P(2,2)|(4)×|P(2,4)|(8)×|P(4,4)|(16)=4(4)×4(4)×4(p+q−6)(8)×2(p−3)(q−3)(16)=262144(p+q−6)(pq−3p−3q+9)=262144(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
The graphical representation of the Theorem 3.1 is given in Figure 2(a), (b).
Theorem 3.2. Let G be a tensor product of two paths. Then the general fifth multiplicative Zagreb indices of G are:
§3(G)=128(960)α(p2q+pq2−3p2−3q2−12pq+27p+27q−54), |
§5(G)=128(2048)α(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Proof. From the definitions of §3(G) and Table 1, we get
§3(G)=|P(1,4)|(1+4)α×|P(2,2)|(2+2)α×|P(2,4)|(2+4)α×|P(4,4)|(4+4)α=4(5)α×4(4)α×4(p+q−6)(6)α×2(p−3)(q−3)(8)α=128(960)α(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
From the definitions of §5(G) and Table 1, we obtain
§5(G)=|P(1,4)|(1 × 4)α×|P(2,2)|(2×2)α×|P(2,4)|(2×4)α×|P(4,4)|(4×4)α=4(4)α×4(4)α×4(p+q−6)(8)α×2(p−3)(q−3)(16)α=128(2048)α(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Theorem 3.3. Let G be a tensor product of two paths. Then the fifth multiplicative hyper-Zagreb indices for G are:
§4(G)=117964800(p2q+pq2−3p2−3q2−12pq+27p+27q−54), |
§6(G)=536870912(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Proof. From the definitions of §4(G), §6(G) and Table 1, we obtain
§4(G)=|P(1,4)|(1+4)2×|P(2,2)|(2+2)2×|P(2,4)|(2+4)2×|P(4,4)|(4+4)2=4(5)2×4(4)2×4(p+q−6)(6)2×2(p−3)(q−3)(8)2=117964800(p2q+pq2−3p2−3q2−12pq+27p+27q−54), |
§6(G)=|P(1,4)|(1 × 4)2×|P(2,2)|(22)2×|P(2,4)|(24)2×|P(4,4)|(44)2=4(4)2×4(4)2×4(p+q−6)(8)2×2(p−3)(q−3)(16)2=536870912(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
The graphical representations of Theorems 3.2 and 3.3 are shown in Figure 2(c)–(f) with p and q, respectively.
Theorem 3.4. The fifth multiplicative product connectivity index §8 for tensor product of two path G is:
§8(G)=14096√2(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Proof. From the formulation of §8(G) and Table 1, it is easy to calculate that
§8(G)=1|P(1,4)|√(4)×1|P(2,2)|√(4)×1|P(2,4)|√(8)×1|P(4,4)|√(16)=14√(4)×14√(4)×14(p+q−6)√(8)×12(p−3)(q−3)√(16)=14096√2(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
The graphical representation of fifth multiplicative product connectivity index §8 is shown in Figure 2(g) with p and q.
Theorem 3.5. Let G be a tensor product of two paths. Then the fifth multiplicative sum-connectivity index of a graph G is:
§9(G)=11024√15(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Proof. From the formulation of §9(G) and Table 1, we get
§9=1|P(1,4)|√(5)×1|P(2,2)|√(4)×1|P(2,4)|√6×1|P(4,4)|√8=14√(5)×14√(4)×14(p+q−6)√6×12(p−3)(q−3)√8=11024√15×(p2q+pq2−3p2−3q2−12pq+27p+27q−54). |
Theorem 3.6. Let G be a tensor product of two paths. Then the fifth multiplicative geometric-arithmetic index §10 of a graph G is:
§10(G)=64√2√15. |
Proof. By the definition of §10(G) and using the values of Table 1, we have
§10=2|P(1,4)|√(4)|P(1,4)|√(5)×2|P(2,2)|√(4)|P(2,2)|√(4)×2|P(2,4)|√(8)|P(2,4)|√6×2|P(4,4)|√(16)|P(4,4)|√(8)=24√44√5×24√44√4×24(p+q−6)√84(p+q−6)√6×22(p−3)(q−3)√162(p−3)(q−3)√8=64√2√15. |
The graphical representations of fifth multiplicative sum-connectivity index §9 and fifth multiplicative geometric-arithmetic index §10 is shown in Figure 3(a), (b), respectively.
Theorem 3.7. Let G be a tensor product of two paths. Then the fifth multiplicative product connectivity index of first kind is
§7(G)=1024√2(p2q−3p2+pq2−12pq+27p−3q2+27q−54), |
the fifth multiplicative harmonic index is
§11(G)=164√15(p2q−3p2+pq2−12pq+27p−3q2+27q−54), |
the fifth multiplicative redefined Zagreb index is
§12(G)=251658240(p+q−6)(p−3)(q−3). |
Proof. By using Table 1, in the formulation of §7(G) §11(G) and §12(G) we get
§7=|P(1,4)|√(1×4)×|P(2,2)|√(2×2)×|P(2,4)|√(2×4)×|P(4,4)|√(4×4)=4√4×4√4×4(p+q−6)√8×2(p−3)(q−3)√16=1024√2(p2q−3p2+pq2−12pq+27p−3q2+27q−54), |
§11(G)=2|P(1,4)|√(5)×2|P(2,2)|√(4)×2|P(2,4)|√6×2|P(4,4)|√(8)=12√(5)×12√(4)×12(p+q−6)√6×1(p−3)(q−3)√8=164√15(p2q−3p2+pq2−12pq+27p−3q2+27q−54), |
§12(G)=|P(1,4)|(1× 4)(1+4)×|P(2,2)|(2×2)(2+2)×|P(2,4)|(2×4)(2+4)×|P(4,4)|(4×4)(4+4)=251658240(p+q−6)(p−3)(q−3). |
The graphical representations of fifth multiplicative product connectivity index of first kind, the fifth multiplicative harmonic index and the fifth multiplicative redefined Zagreb index are shown in Figure 3(c)–(e), respectively.
A tetrahedral diamond lattice Ω is made up of t layers, each of which extends to lt. The initial layer only has one vertex, while the subsequent layer is isomorphic to S4 because it contains four vertices. Each layer l for t ≥3 has ∑l−2k=1k hexagons with 3 pendent vertices. We may set up each additional layer's vertices in accordance with the depth initial marking. To be more specific, we may use layer l to represent labels from ∑l−2k=1k2+1 to ∑l−2k=1k2. The vertex set of a Ω of size t contains vertices that are a and b while the edge set has edges that are 23(t2−t). Ω have no odd cycles, making them bipartite graphs. The graph of tetrahedral diamond lattice Ω is shown in Figure 4 and the edge partition based on the degree of end vertices is given in Table 2.
L(U1), L(U2) | Frequency |
(1, 4) | 4 |
(2, 4) | 12(t-2) |
(3, 4) | 6(t-2)(t-3) |
(4, 4) | 2/3(t3−9t2+26t−24) |
Theorem 4.1. Let Ω tetrahedral diamond lattice then the fifth neighborhood multiplicative M-Zagreb indices for Ω are:
§1(Ω)=40320(t3−7t2+16t−12)(t3−9t2+26t−24), |
§2(Ω)=1179648(t3−7t2+16t−12)(t3−9t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.1), we get
§1(Ω)=|P(1,4)|(1+4)×|P(2,4)|(2+4)×|P(3,4)|(3+4)×|P(4,4)|(4+4)=4(5)×12(t−2)(6)×6(t−2)(t−3)(7)×23(t3−9t2+26t−24)(8)=40320(t3−7t2+16t−12)(t3−9t2+26t−24), |
§2(Ω)=|P(1,4)|(1×4)×|P(2,4)|(2×4)×|P(3,4)|(3×4)×|P(4,4)|(4×4)=4(4)×12(t−2)(8)×6(t−2)(t−3)(12)×23(t3−9t2+26t−24)(16)=1179648(t3−7t2+16t−12)(t3−9t2+26t−24). |
The graphical representations of §1(Ω) and §2(Ω) with t is shown in Figure 5.
Theorem 4.2. Let Ω tetrahedral diamond lattice then the general fifth multiplicative Zagreb indices of Ω are:
§3(Ω)=192(1680)α(t3−7t2+16t−12)(t3−9t2+26t−24), |
§5(Ω)=192(6144)α(t3−7t2+16t−12)(t3−7t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.2), we get
§3(G)=[|P(1,4)|(1+4)α×|P(2,4)|(2+4)α×|P(3,4)|(3+4)α×|P(4,4)|(4+4)α]=4(5)α×12(t−2)(6)α×6(t−2)(t−3)(7)α×23(t3−9t2+26t−24)(8)α=192(1680)α(t3−7t2+16t−12)(t3−9t2+26t−24), |
§5(Ω)=[|P(1,4)|(1×4)α×|P(2,4)|(2×4)α×|P(3,4)|(3×4)α×|P(4,4)|(4×4)a]=[4(4)α×12(t−2)(8)α×6(t−2)(t−3)(12)α×23(t3−9t2+26t−24)(16)a=192(6144)a(t3−7t2+16t−12)(t3−7t2+26t−24). |
Theorem 4.3. Let Ω tetrahedral diamond lattice then the fifth multiplicative hyper-Zagreb indices Ω are:
§4(Ω)=541900800(t3−7t2+16t−12)(t3−9t2+26t−24), |
§6(Ω)=7247757312(t3−7t2+16t−12)(t3−7t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.3), we get
§4(Ω)=|P(1,4)|(1+4)2×|P(2,4)|(2+4)2×|P(3,4)|(3+4)2×|P(4,4)|(4+4)2=4(5)2×12(t−2)(6)2×6(t−2)(t−3)(7)2×23(t3−9t2+26t−24)(8)2=4×12×6×23×(5×6×7×8)2(t−2)2(t−3)(t3−9t2+26t−24)=192(1680)2(t2+4−4t)(t−3)(t3−9t2+26t−24)=541900800(t3−7t2+16t−12)(t3−9t2+26t−24), |
§6(Ω)=|P(1,4)|(1×4)2×|P(2,4)|(2×4)2×|P(3,4)|(3×4)2×|P(4,4)|(4×4)2=4(4)2×12(t−2)(8)2×6(t−2)(t−3)(12)2×23(t3−9t2+26t−24)(16)2=4×12×6×23×(4×8×12×16)2(t3−7t2+16t−12)(t3−7t2+26t−24)=7247757312(t3−7t2+16t−12)(t3−7t2+26t−24). |
The graphical representations of §3(Ω)–§6(Ω), with t is shown in Figure 5.
Theorem 4.4. Let Ω tetrahedral diamond lattice then the fifth multiplicative product connectivity index Ω are:
§8(Ω)=16144√6(t3−7t2+16t−12)(t3−9t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.4), we get
§8=1|P(1,4)|√(1×4)×1|P(2,4)|√(2×4)×1|P(3,4)|√(3×4)×1|P(4,4)|√(4×4)=14√(4)×112(t−2)√(8)×16(t−2)(t−3)√(12)×123(t3−9t2+26t−24)√16=16144√6(t3−7t2+16t−12)(t3−9t2+26t−24). |
The graphical representation of the fifth multiplicative product connectivity index §8(Ω) with t is shown in Figure 5.
Theorem 4.5. Let Ω tetrahedral diamond lattice then the fifth multiplicative sum-connectivity index Ω is:
§9(Ω)=1768√210(t3−7t2+16t−12)(t3−9t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.5), we get
§9(Ω)=1|P(1,4)|√(1+4)×1|P(2,4)|√(2+4)×1|P(3,4)|√(3+4)×1|P(4,4)|√(4+4)=14√(5)×112(t−2)√(6)×16(t−2)(t−3)√(7)×123(t3−9t2+26t−24)√(8)=1768√210(t3−7t2+16t−12)(t3−9t2+26t−24). |
Theorem 4.6. Let Ω tetrahedral diamond lattice then the fifth multiplicative geometric-arithmetic index Ω is
§10(Ω)=128√2√35. |
Proof. Using the values of Table 2 in Eq (2.6), we get
§10=2|P(1,4)|√(1×4)|P(1,4)|√(1+4)×2|P(2,4)|√(2×4)|P(2,4)|√(2+4)×2|P(3,4)|√(3×4)|P(3,4)|√(3+4)×2|P(4,4)|√(4×4)|P(4,4)|√(4+4)=2×4√44√5×2×12(t−2)√812(t−2)√6×2×6(t−2)(t−3)√126(t−2)(t−3)√7×2×23(t3−9t2+26t−24)√1623(t3−9t2+26t−24)√8=128√2√35. |
Theorem 4.7. Let Ω tetrahedral diamond lattice. Then the fifth multiplicative product connectivity index of first kind is
§7(Ω)=6144√6(t3−7t2+16t−12)(t3−9t2+26t−24), |
the fifth multiplicative harmonic index is
§11(Ω)=148√105(t3−7t2+16t−12)(t3−9t2+26t−24), |
the fifth multiplicative redefined Zagreb index is
§12(Ω)=1981808640(t3−7t2+16t−12)(t3−7t2+26t−24). |
Proof. Using the values of Table 2 in Eq (2.7), we get
§7(Ω)=|P(1,4)|√(1×4)×|P(2,4)|√(2×4)×|P(3,4)|√(3×4)×|P(4,4)|√(4×4)=4√(4)×12(t−2)√(8)×6(t−2)(t−3)√(12)×23(t3−9t2+26t−24)√16=6144√6(t3−7t2+16t−12)(t3−9t2+26t−24), |
§11(Ω)=2|P(1,4)|√(1+4)×2|P(2,4)|√(2+4)×2|P(3,4)|√(3+4)×2|P(4,4)|√(4+4)=24√(5)×212(t−2)√(6)×26(t−2)(t−3)√(7)×223(t3−9t2+26t−24)√(8)=148√105(t3−7t2+16t−12)(t3−9t2+26t−24), |
§12(Ω)=|P(1,4)|(1×4)(1+4)×|P(2,4)|(2×4)(2+4)×|P(3,4)|(3×4)(3+4)×|P(4,4)|(4×4)(4+4)=4(4)5×12(t−2)(8)6×6(t−2)(t−3)(12)(7)×23(t3−9t2+26t−24)16(8)=1981808640(t3−7t2+16t−12)(t3−7t2+26t−24). |
The graphical representations of the fifth multiplicative product connectivity index of first kind §7(Ω), the fifth multiplicative sum-connectivity index §9(Ω), the fifth multiplicative geometric-arithmetic index §10(Ω), fifth multiplicative harmonic index §11(Ω) and fifth multiplicative redefined Zagreb index §12(Ω) are shown in Figure 6.
This study contains a novel method for computing the topological indices of different chemical networks and namely the networks are product of graphs (L) and tetrahedral diamond lattices (Ω). The mathematical topological properties of molecular structure descriptors, specifically those that depend on graph degrees, are examined in this research work. We derived neighborhood multiplicative topological indices and concise mathematical analysis for product of graphs (L) and tetrahedral diamond lattices (Ω). A few topological descriptors are studied namely, the fifth multiplicative Zagreb index, the general fifth-multiplicative Zagreb index, the fifth-multiplicative hyper-Zagreb index, the fifth-multiplicative product connectivity index, the fifth-multiplicative sum connectivity index, the fifth-multiplicative geometric-arithmetic index, the fifth-multiplicative harmonic index, and the fifth-multiplicative redefined Zagreb index are the topological indices that are taken into consideration. Moreover, a comparative study is also included in this work.
The author is grateful to the Deanship of Scientific Research of Jazan University for supporting financially this work under Waed grant No. (W44-91).
I declare that there is no conflict of interest of this article.
[1] |
A. Algaba, C. García, J. Giné, Nondegenerate centers and limit cycles of cubic Kolmogorov systems, Nonlinear Dyn., 91 (2018), 487–496. https://doi.org/10.1007/s11071-017-3883-5 doi: 10.1007/s11071-017-3883-5
![]() |
[2] |
X. Chen, J. Llibre, Z. Zhang, Suffificient conditions for the existence of at least n or exactly n limit cycles for the Liénard differential systems, J. Differ. Equations, 242 (2007), 11–23. https://doi.org/10.1016/j.jde.2007.07.004 doi: 10.1016/j.jde.2007.07.004
![]() |
[3] |
H. Chen, M. Han, Y. Xia, Limit cycles of a Liénard system with symmetry allowing for discontinuity, J. Math. Anal. Appl., 468 (2018), 799–816. https://doi.org/10.1016/j.jmaa.2018.08.050 doi: 10.1016/j.jmaa.2018.08.050
![]() |
[4] |
C. Du, W. Huang, Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model, Nonlinear Dyn., 72 (2013), 197–206. https://doi.org/10.1007/s11071-012-0703-9 doi: 10.1007/s11071-012-0703-9
![]() |
[5] |
C. Du, Y. Liu, W. Huang, Limit cycles bifurcations for a class of Kolmogorov model in symmetrical vector field, Int. J. Bifurcat. Chaos, 24 (2014), 1450040. https://doi.org/10.1142/S0218127414500400 doi: 10.1142/S0218127414500400
![]() |
[6] |
C. Du, Y. Liu, Q. Zhang, Limit cycles in a class of quartic Kolmogorov model with three positive equilibrium points, Int. J. Bifurcat. Chaos, 25 (2015), 1550080. https://doi.org/10.1142/S0218127415500807 doi: 10.1142/S0218127415500807
![]() |
[7] |
C. Du, Q. Wang, W. Huang, Three-Dimensional Hopf bifurcation for a class of cubic Kolmogorov model, Int. J. Bifurcat. Chaos, 24 (2014), 1450036. https://doi.org/10.1142/S0218127414500369 doi: 10.1142/S0218127414500369
![]() |
[8] |
J. Gu, A. Zegeling, W. Huang, Bifurcation of limit cycles and isochronous centers on center manifolds for a class of cubic Kolmogorov systems in R3, Qual. Theory Dyn. Syst., 22 (2023), 42. https://doi.org/10.1007/s12346-023-00745-8 doi: 10.1007/s12346-023-00745-8
![]() |
[9] |
D. He, W. Huang, Q. Wang, Small amplitude limit cycles and local bifurcation of critical periods for a quartic Kolmogorov system, Qual. Theory Dyn. Syst., 19 (2020), 68. https://doi.org/10.1007/s12346-020-00401-5 doi: 10.1007/s12346-020-00401-5
![]() |
[10] |
X. Huang, L. Zhu, Limit cycles in a general kolmogorov model, Nonlinear Anal. Theor., 60 (2005), 1394–1414. https://doi.org/10.1016/j.na.2004.11.003 doi: 10.1016/j.na.2004.11.003
![]() |
[11] |
M. Han, Y. Lin, P. Yu, A study on the existence of limit cycles of a planar system with 3rd-degree polynomials, Int. J. Bifurcat. Chaos, 14 (2004), 41–60. https://doi.org/10.1142/S0218127404009247 doi: 10.1142/S0218127404009247
![]() |
[12] | A. Kolmogorov, Sulla teoria di Volterra della lotta per lésistenza, Giornale dell'Istituto Italiano degli Attuari, 7 (1936), 74–80. |
[13] |
A. Q. Khan, S. A. H. Bukhari, M. B. Almatrafi, Global dynamics, Neimark-Sacker bifurcation and hybrid control in a Leslie's prey-predator model, Alex. Eng. J., 61 (2022), 11391–11404. https://doi.org/10.1016/j.aej.2022.04.042 doi: 10.1016/j.aej.2022.04.042
![]() |
[14] |
A. Q. Khan, F. Nazir, M. B. Almatrafi, Bifurcation analysis of a discrete Phytoplankton CZooplankton model with linear predational response function and toxic substance distribution, Int. J. Biomath., 16 (2023), 2250095. https://doi.org/10.1142/S1793524522500954 doi: 10.1142/S1793524522500954
![]() |
[15] |
A. Q. Khan, M. Tasneem, M. B. Almatrafi, Discrete-time COVID-19 epidemic model with bifurcation and control, Math. Biosci. Eng., 19 (2022), 1944–1969. https://doi.org/10.3934/mbe.2022092 doi: 10.3934/mbe.2022092
![]() |
[16] |
Y. Liu, Theory of center-focus for a class of higher-degree critical points and infinite points, Sci. China Ser. A-Math., 44 (2001), 365–377. https://doi.org/10.1007/BF02878718 doi: 10.1007/BF02878718
![]() |
[17] | Y. Liu, H. Chen, Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system, Acta Math. Appl. Sin., 25 (2002), 295–302. |
[18] | Y. Liu, J. Li, Theory of values of singular point in complex autonomous differential system, Sci. China Ser. A-Math., 3 (1990), 10–24. |
[19] |
J. Llibre, Y. Martínez, Dynamics of a family of Lotka-Volterra systems in R3, Nonlinear Anal., 199 (2020), 111915. https://doi.org/10.1016/j.na.2020.111915 doi: 10.1016/j.na.2020.111915
![]() |
[20] |
J. Llibre, Y. Martínez, C. Valls, Limit cycles bifurcating of Kolmogorov systems in R2 and in R3, Commun. Nonlinear Sci., 91 (2020), 105401. https://doi.org/10.1016/j.cnsns.2020.105401 doi: 10.1016/j.cnsns.2020.105401
![]() |
[21] |
J. Llibre, X. Zhang, Limit cycles of the classical Liénard differential systems: A survey on the Lins Neto, de Melo and Pughs conjecture, Expo. Math., 35 (2017), 286–299. https://doi.org/10.1016/j.exmath.2016.12.001 doi: 10.1016/j.exmath.2016.12.001
![]() |
[22] |
N. G. Lloyd, J. M. Pearson, E. Saéz, I. Szántó, A cubic Kolmogorov system with six limit cycles, Comput. Math. Appl., 44 (2002), 445–455. https://doi.org/10.1016/S0898-1221(02)00161-X doi: 10.1016/S0898-1221(02)00161-X
![]() |
[23] | Z. Lu, B. He, Multiple stable limit cycles for a cubic kolmogorov system, Chinese Journal of Engineering Mathematics, 4 (2001), 115–117. |
[24] |
N. G. Lloyd, J. M. Pearson, E. Saez, I. Szanto, Limit cycles of a cubic kolmogorov system, Appl. Math. Lett., 9 (1996), 15–18. https://doi.org/10.1016/0893-9659(95)00095-X doi: 10.1016/0893-9659(95)00095-X
![]() |
[25] |
Y. Wu, C. Zhang, Integrability and non-linearizability of weak saddles in a cubic Kolmogorov model, Chaos Soliton. Fract., 153 (2021), 111514. https://doi.org/10.1016/j.chaos.2021.111514 doi: 10.1016/j.chaos.2021.111514
![]() |
[26] |
Y. Yuan, H. Chen, C. Du, Y. Yuan, The limit cycles of a general Kolmogorov system, J. Math. Anal. Appl., 392 (2012), 225–237. https://doi.org/10.1016/j.jmaa.2012.02.065 doi: 10.1016/j.jmaa.2012.02.065
![]() |
1. | Ali Ahmad, Ali N. A. Koam, Ibtisam Masmali, Muhammad Azeem, Haleemah Ghazwani, Connection number topological aspect for backbone DNA networks, 2023, 46, 1292-8941, 10.1140/epje/s10189-023-00381-9 | |
2. | Ibtisam Masmali, Muhammad Azeem, Muhammad Kamran Jamil, Ali Ahmad, Ali N. A. Koam, Study of some graph theoretical parameters for the structures of anticancer drugs, 2024, 14, 2045-2322, 10.1038/s41598-024-64086-5 | |
3. | Hani Shaker, Sabeen Javaid, Usman Babar, Muhammad Kamran Siddiqui, Asim Naseem, Characterizing superlattice topologies via fifth M-Zagreb polynomials and structural indices, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-04645-3 | |
4. | Ali N. A. Koam, Ali Ahmad, Ibtisam Masmali, Muhammad Azeem, Mehwish Sarfraz, Naeem Jan, Several intuitionistic fuzzy hamy mean operators with complex interval values and their application in assessing the quality of tourism services, 2024, 19, 1932-6203, e0305319, 10.1371/journal.pone.0305319 | |
5. | Ali N. A. Koam, Ali Ahmad, Maryam Salem Alatawi, Adnan Khalil, Muhammad Azeem, Ammar Alsinai, On the Constant Partition Dimension of Some Generalized Families of Toeplitz Graph, 2024, 2024, 2314-4629, 10.1155/2024/4721104 | |
6. | Ali N. A. Koam, Ali Ahmad, Raed Qahiti, Muhammad Azeem, Waleed Hamali, Shonak Bansal, Enhanced Chemical Insights into Fullerene Structures via Modified Polynomials, 2024, 2024, 1076-2787, 10.1155/2024/9220686 | |
7. | Ali Ahmad, Ali N. A. Koam, Muhammad Azeem, Ibtisam Masmali, Rehab Alharbi, Eyas Mahmoud, Edge based metric dimension of various coffee compounds, 2024, 19, 1932-6203, e0294932, 10.1371/journal.pone.0294932 | |
8. | Muhammad Shoaib Sardar, Khalil Hadi Hakami, Vinod Kumar Tiwari, QSPR Analysis of Some Alzheimer’s Compounds via Topological Indices and Regression Models, 2024, 2024, 2090-9063, 10.1155/2024/5520607 | |
9. | Ali N. A. Koam, Ali Ahmad, Shahid Zaman, Ibtisam Masmali, Haleemah Ghazwani, Fundamental aspects of the molecular topology of fuchsine acid dye with connection numbers, 2024, 47, 1292-8941, 10.1140/epje/s10189-024-00418-7 | |
10. | Haleemah Ghazwani, Muhammad Kamran Jamil, Ali Ahmad, Muhammad Azeem, Ali N. A. Koam, Applications of magnesium iodide structure via modified-polynomials, 2024, 14, 2045-2322, 10.1038/s41598-024-64344-6 | |
11. | Ali N.A. Koam, Muhammad Azeem, Ali Ahmad, Ibtisam Masmali, Connection number-based molecular descriptors of skin cancer drugs, 2024, 15, 20904479, 102750, 10.1016/j.asej.2024.102750 | |
12. | Khawlah Alhulwah, Ali N.A. Koam, Nasreen Almohanna, Muhammad Faisal Nadeem, Ali Ahmad, Topological indices and their correlation with structural properties of carbon nanotube Y-junctions, 2025, 70, 22113797, 108141, 10.1016/j.rinp.2025.108141 |
L(U1), L(U2) | Frequency |
(1, 4) | 4 |
(2, 2) | 4 |
(2, 4) | 4(p+q-6) |
(4, 4) | 2(p-3)(q-3) |
L(U1), L(U2) | Frequency |
(1, 4) | 4 |
(2, 4) | 12(t-2) |
(3, 4) | 6(t-2)(t-3) |
(4, 4) | 2/3(t3−9t2+26t−24) |