Uncertain differential equation is a type of differential equation driven by canonical Liu process. By applying some uncertain theories, the sufficient conditions of the exponential stability in mean square is obtained for nonlinear uncertain differential equations. At the same time, some new criteria ensuring the existence of the global attracting sets of considered equations are presented.
Citation: Yurou Deng, Zhi Li, Liping Xu. Global attracting sets and exponential stability of nonlinear uncertain differential equations[J]. AIMS Mathematics, 2023, 8(11): 26703-26714. doi: 10.3934/math.20231366
Uncertain differential equation is a type of differential equation driven by canonical Liu process. By applying some uncertain theories, the sufficient conditions of the exponential stability in mean square is obtained for nonlinear uncertain differential equations. At the same time, some new criteria ensuring the existence of the global attracting sets of considered equations are presented.
[1] | B. Liu, Why is there a need for uncertainty theory, J. Uncertain Syst., 6 (2012), 3–10. |
[2] | B. Liu, Uncertainty theory, Springer, 2004. https://doi.org/10.1007/978-3-540-39987-2 |
[3] | Z. Peng, K. Iwamura, A sufficient and necessary condition of uncertainty distribution, J. Interdiscip. Math., 13 (2010), 277–285. https://doi.org/10.1080/09720502.2010.10700701 doi: 10.1080/09720502.2010.10700701 |
[4] | Y. H. Liu, M. H. Ha, Expected value of function of uncertain variables, J. Uncertain Syst., 4 (2010), 181–186. |
[5] | B. Liu, Toward uncertain finance theory, J. Uncertainty Anal. Appl., 1 (2013), 1. https://doi.org/10.1186/2195-5468-1-1 doi: 10.1186/2195-5468-1-1 |
[6] | Z. Zhang, Z. Wang, X. Chen, Pricing convertible bond in uncertain financial market, J. Uncertain Syst., 14 (2021), 2150007. https://doi.org/10.1142/s1752890921500070 doi: 10.1142/s1752890921500070 |
[7] | Z. Zhang, H. Ke, W. Liu, Lookback options pricing for uncertain financial market, Soft Comput., 23 (2019), 5537–5546. https://doi.org/10.1007/s00500-018-3211-0 doi: 10.1007/s00500-018-3211-0 |
[8] | Z. Zhang, W. Liu, J. Ding, Valuation of stock loan under uncertain environment, Soft Comput., 22 (2018), 5663–5669. https://doi.org/10.1007/s00500-017-2591-x doi: 10.1007/s00500-017-2591-x |
[9] | Y. Sheng, R. Gao, Z. Zhang, Uncertain population model with age-structure, J. Intell. Fuzzy Syst., 33 (2017), 853–858. https://doi.org/10.3233/JIFS-162080 doi: 10.3233/JIFS-162080 |
[10] | Z. Zhang, X. Yang, Uncertain population model, Soft Comput., 24 (2020), 2417–2423. https://doi.org/10.1007/s00500-018-03678-6 |
[11] | K. Yao, J. Gao, Y. Gao, Some stability theorems of uncertain differential equation, Fuzzy Optim. Decis. Making, 12 (2013), 3–13. https://doi.org/10.1007/s10700-012-9139-4 doi: 10.1007/s10700-012-9139-4 |
[12] | X. Yang, Y. Ni, Y. Zhang, Stability in inverse distribution for uncertain differential equations, J. Intell. Fuzzy Syst., 32 (2017), 2051–2059. https://doi.org/10.3233/JIFS-161661 doi: 10.3233/JIFS-161661 |
[13] | K. Yao, H. Ke, Y. Sheng, Stability in mean for uncertain differential equation, Fuzzy Optim. Decis. Making, 14 (2015), 365–379. https://doi.org/10.1007/s10700-014-9204-2 doi: 10.1007/s10700-014-9204-2 |
[14] | H. Liu, H. Ke, W. Fei, Almost sure stability for uncertain differential equation, Fuzzy Optim. Decis. Making, 13 (2014), 463–473. https://doi.org/10.1007/s10700-014-9188-y doi: 10.1007/s10700-014-9188-y |
[15] | X. Chen, Y. Ning, The $p$th moment exponential stability of uncertain differential equation, J. Intell. Fuzzy Syst., 33 (2017), 725–732. https://doi.org/10.3233/JIFS-161836 doi: 10.3233/JIFS-161836 |
[16] | Y. Sheng, J. Gao, Exponential stability of uncertain differential equation, Soft Comput., 20 (2016), 3673–3678. https://doi.org/10.1007/s00500-015-1727-0 doi: 10.1007/s00500-015-1727-0 |
[17] | Z. Zhang, R. Gao, X. Yang, The stability of multifactor uncertain differential equation, J. Intell. Fuzzy Syst., 30 (2016), 3281–3290. https://doi.org/10.3233/IFS-152076 doi: 10.3233/IFS-152076 |
[18] | Y. Sheng, G. Shi, Stability in $p$-th moment for multifactor uncertain differential equation, J. Intell. Fuzzy Syst., 35 (2018), 2421–2431. https://doi.org/10.3233/JIFS-18015 doi: 10.3233/JIFS-18015 |
[19] | X. Wang, Almost sure and $p$th moment stability of uncertain differential equations with time-varying delay, Eng. Optim., 54 (2022), 185–199. https://doi.org/10.1080/0305215X.2020.1849171 doi: 10.1080/0305215X.2020.1849171 |
[20] | X. Wang, Y. Ning, A new stability analysis of uncertain delay differential equations, Math. Probl. Eng., 2019 (2019), 1257386. https://doi.org/10.1155/2019/1257386 doi: 10.1155/2019/1257386 |
[21] | X. Chen, J. Gao, Stability analysis of linear uncertain differential equations, Ind. Eng. Manage. Syst., 12 (2013), 2–8. https://doi.org/10.7232/iems.2013.12.1.002 doi: 10.7232/iems.2013.12.1.002 |
[22] | N. Tao, Y. Zhu, Attractivity and stability analysis of uncertain differential systems, Int. J. Bifurcat. Chaos, 25 (2015), 1550022. https://doi.org/10.1142/S0218127415500224 doi: 10.1142/S0218127415500224 |
[23] | N. Tao, Y. Zhu, Stability and attractivity in optimistic value for dynamical systems with uncertainty, Int. J. General Syst., 45 (2016), 418–433. https://doi.org/10.1080/03081079.2015.1072522 doi: 10.1080/03081079.2015.1072522 |
[24] | X. Chen, B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Making, 9 (2010), 69–81. https://doi.org/10.1007/s10700-010-9073-2 doi: 10.1007/s10700-010-9073-2 |
[25] | X. Wang, Y. Ning, Z. Peng, Some results about uncertain differential equations with time-dependent delay, Appl. Math. Comput., 366 (2020), 124747. https://doi.org/10.1016/j.amc.2019.124747 doi: 10.1016/j.amc.2019.124747 |