In this paper, we introduce a class of neutral-type neural networks with delay in the leakage terms. Using coincidence degree theory, Lyapunov functional method and the properties of neutral operator, we establish some new sufficient criteria for the existence and global attractiveness of periodic solutions. Finally, an example demonstrates our findings.
Citation: Shihong Zhu, Bo Du. Global attractive periodic solutions of neutral-type neural networks with delays in the leakage terms[J]. AIMS Mathematics, 2023, 8(11): 26731-26744. doi: 10.3934/math.20231368
In this paper, we introduce a class of neutral-type neural networks with delay in the leakage terms. Using coincidence degree theory, Lyapunov functional method and the properties of neutral operator, we establish some new sufficient criteria for the existence and global attractiveness of periodic solutions. Finally, an example demonstrates our findings.
[1] | L. O. Chua, L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257–1272. https://doi.org/10.1109/31.7600 doi: 10.1109/31.7600 |
[2] | K. Gopalsamy, Leakage delays in BAM, J. Math. Anal. Appl., 325 (2007), 1117–1132. https://doi.org/10.1016/j.jmaa.2006.02.039 |
[3] | C. Li, T. Huang, On the stability of nonlinear systems with leakage delay, J. Franklin Inst., 346 (2009), 366–377. https://doi.org/10.1016/j.jfranklin.2008.12.001 doi: 10.1016/j.jfranklin.2008.12.001 |
[4] | X. Li, J. Cao, Delay-dependent stability of neural networks of neutral type with time delay in the leakage term, Nonlinearity, 23 (2010), 1709–1726. https://doi.org/10.1088/0951-7715/23/7/010 doi: 10.1088/0951-7715/23/7/010 |
[5] | S. Peng, Global attractive periodic solutions of BAM neural networks with continuously distributed delays in the leakage terms, Nonlinear Anal. Real World Appl., 11 (2010), 2141–2151. https://doi.org/10.1016/j.nonrwa.2009.06.004 doi: 10.1016/j.nonrwa.2009.06.004 |
[6] | X. Li, R. Rakkiyappan, P. Balasubramaniam, Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations, J. Franklin Inst., 348 (2011), 135–155. https://doi.org/10.1016/j.jfranklin.2010.10.009 doi: 10.1016/j.jfranklin.2010.10.009 |
[7] | M. Ali, M. Hymavathi, B. Priya, S. Kauser, G. Thakur, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, AIMS Mathematics, 6 (2021), 3205–3241. |
[8] | L. Zhang, Q. Song, Z. Zhao, Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays, Appl. Math. Comput., 298 (2017), 296–309. https://doi.org/10.1016/j.amc.2016.11.027 doi: 10.1016/j.amc.2016.11.027 |
[9] | A. Singh, J. N. Rai, Stability analysis of fractional order fuzzy cellular neural networks with leakage delay and time varying delays, Chinese J. Phys., 73 (2021), 589–599. https://doi.org/10.1016/j.cjph.2021.07.029 doi: 10.1016/j.cjph.2021.07.029 |
[10] | C. D. Zheng, Y. Wang, Z. Wang, Stability analysis of stochastic fuzzy Markovian jumping neural networks with leakage delay under impulsive perturbations, J. Franklin Inst., 351 (2014), 1728–1755. https://doi.org/10.1016/j.jfranklin.2013.12.013 doi: 10.1016/j.jfranklin.2013.12.013 |
[11] | J. Alzabut, S. Tyagi, S. Abbas, Discrete fractional-order BAM neural networks with leakage delay: Existence and stability results, Asian J. Control, 22 (2020), 143–155. https://doi.org/10.1002/asjc.1918 doi: 10.1002/asjc.1918 |
[12] | T. Zhang, L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. doilinkhttps://doi.org/10.1016/j.aml.2019.106072 doi: 10.1016/j.aml.2019.106072} |
[13] | T. Zhang, Y. Li, Global exponential stability of discrete-time almost automorphic Caputo CFabrizio BAM fuzzy neural networks via exponential Euler technique, Knowledge-Based Systems, 246 (2022), 108675. https://doi.org/10.1016/j.knosys.2022.108675 doi: 10.1016/j.knosys.2022.108675 |
[14] | T. Zhang, H. Qu, J. Zhou, Asymptotically almost periodic synchronization in fuzzy competitive neural networks with Caputo-Fabrizio operator, Fuzzy Sets Syst., 471 (2023), 108676. https://doi.org/10.1016/j.fss.2023.108676 doi: 10.1016/j.fss.2023.108676 |
[15] | X. Yang, F. Li, Y. Long, X. Cui, Existence of periodic solution for discrete-time cellular neural networks with complex deviating arguments and impulses, J. Franklin Inst., 347 (2010), 559-566. https://doi.org/10.1016/j.jfranklin.2009.12.004 doi: 10.1016/j.jfranklin.2009.12.004 |
[16] | J. H. Park, Further result on asymptotic stability criterion of cellular neural networks with time-varying discrete and distributed delays, Appl. Math. Comput., 182 (2006), 1661–1666. https://doi.org/10.1016/j.amc.2006.06.005 doi: 10.1016/j.amc.2006.06.005 |
[17] | F. Kong, Q. Zhu, Finite-time stabilization of discontinuous fuzzy neutral-type neural networks with $D$ operator and multiple time-varying delays, Fuzzy Sets Syst., 449 (2022), 32–55. https://doi.org/10.1016/j.fss.2022.02.006 doi: 10.1016/j.fss.2022.02.006 |
[18] | H. Zhang, Q. Ma, J. Lu, Y. Chu, Y. Li, Synchronization control of neutral-type neural networks with sampled-data via adaptive event-triggered communication scheme, J. Franklin Inst., 358 (2021), 1999–2014. https://doi.org/10.1016/j.jfranklin.2021.01.005 doi: 10.1016/j.jfranklin.2021.01.005 |
[19] | S. A. Karthick, R. Sakthivel, C. Aouiti, A. Leelamani, Memory feedback finite-time control for memristive neutral-type neural networks with quantization, Chinese J. Phys., 70 (2021), 271–287. https://doi.org/10.1016/j.cjph.2019.09.016 doi: 10.1016/j.cjph.2019.09.016 |
[20] | J. Hale, Theory of functional differential equations, New York: Springer-Verlag, 1993. |
[21] | S. Saravanan, M. S. Ali, A. Alsaedi, B. Ahmad, Finite-time passivity for neutral-type neural networks with time-varying delays via auxiliary function-based integral inequalities, Nonlinear Anal. Model. Control, 25 (2020), 206–224. https://doi.org/10.15388/namc.2020.25.16513 doi: 10.15388/namc.2020.25.16513 |
[22] | X. Zhang, X. F. Fan, Y. Xue, Y. T. Wang, W. Cai, Robust exponential passive filtering for uncertain neutral-type neural networks with time-varying mixed delays via Wirtinger-based integral inequality, Int. J. Control Autom. Syst., 15 (2017), 585–594. https://doi.org/10.1007/s12555-015-0441-0 doi: 10.1007/s12555-015-0441-0 |
[23] | R. Rakkiyappan, P. Balasubramaniam, New global exponential stability results for neutral type neural networks with distributed time delays, Neurocomputing, 71 (2008), 1039–1045. https://doi.org/10.1016/j.neucom.2007.11.002 doi: 10.1016/j.neucom.2007.11.002 |
[24] | J. Park, O. M. Kwon, Global stability for neural networks of neutral-type with interval time-varying delays, Chaos Solitons Fractals, 41 (2009), 1174–1181. https://doi.org/10.1016/j.chaos.2008.04.049 doi: 10.1016/j.chaos.2008.04.049 |
[25] | R. E. Gaines, J. Mawhin, Coincidence degree and nonlinear differential equations, In: Lecture notes in mathematics, Berlin: Springer, 568 (1977). |
[26] | B. Du, L. Guo, W. Ge, S. Lu, Periodic solutions for generalized Li$\acute{e}$nard neutral equation with variable parameter, Nonlinear Anal., 70 (2009), 2387–2394. https://doi.org/10.1016/j.na.2008.03.021 doi: 10.1016/j.na.2008.03.021 |
[27] | K. Gopalsamy, X. Z. He, Delay-independent stability in bidirectional associative memory networks, IEEE Trans. Neural Networ., 5 (1994), 998–1002. https://doi.org/10.1109/72.329700 doi: 10.1109/72.329700 |