Research article Special Issues

Design and dynamical behavior of a fourth order family of iterative methods for solving nonlinear equations

  • Received: 31 December 2023 Revised: 07 February 2024 Accepted: 23 February 2024 Published: 28 February 2024
  • MSC : 37N30, 64H05

  • In this paper, a new fourth-order family of iterative schemes for solving nonlinear equations has been proposed. This class is parameter-dependent and its numerical performance depends on the value of this free parameter. For studying the stability of this class, the rational function resulting from applying the iterative expression to a low degree polynomial was analyzed. The dynamics of this rational function allowed us to better understand the performance of the iterative methods of the class. In addition, the critical points have been calculated and the parameter spaces and dynamical planes have been presented, in order to determine the regions with stable and unstable behavior. Finally, some parameter values within and outside the stability region were chosen. The performance of these methods in the numerical section have confirmed not only the theoretical order of convergence, but also their stability. Therefore, the robustness and wideness of the attraction basins have been deduced from these numerical tests, as well as comparisons with other existing methods of the same order of convergence.

    Citation: Alicia Cordero, Arleen Ledesma, Javier G. Maimó, Juan R. Torregrosa. Design and dynamical behavior of a fourth order family of iterative methods for solving nonlinear equations[J]. AIMS Mathematics, 2024, 9(4): 8564-8593. doi: 10.3934/math.2024415

    Related Papers:

  • In this paper, a new fourth-order family of iterative schemes for solving nonlinear equations has been proposed. This class is parameter-dependent and its numerical performance depends on the value of this free parameter. For studying the stability of this class, the rational function resulting from applying the iterative expression to a low degree polynomial was analyzed. The dynamics of this rational function allowed us to better understand the performance of the iterative methods of the class. In addition, the critical points have been calculated and the parameter spaces and dynamical planes have been presented, in order to determine the regions with stable and unstable behavior. Finally, some parameter values within and outside the stability region were chosen. The performance of these methods in the numerical section have confirmed not only the theoretical order of convergence, but also their stability. Therefore, the robustness and wideness of the attraction basins have been deduced from these numerical tests, as well as comparisons with other existing methods of the same order of convergence.



    加载中


    [1] F. Ahmad, F. Soleymani, F. Khaksar Haghani, S. Serra-Capizzano, Higher order derivative-free iterative methods with and without memory for systems of nonlinear equations, Appl. Math. Comput., 314 (2017), 199–211. http://dx.doi.org/10.1016/j.amc.2017.07.012 doi: 10.1016/j.amc.2017.07.012
    [2] S. Amat, S. Busquier, S. Plaza, Review of some iterative root-finding methods from a dynamical point of view, Series A: Mathematical Sciences, 10 (2004), 3–35.
    [3] I. Argyros, Á. Magreñán, Iterative methods and their dynamics with applications: a contemporary study, Boca Raton: CRC Press, 2017.
    [4] S. Artidiello, A. Cordero, J. Torregrosa, M. Vassileva, Optimal high-order methods for solving nonlinear equations, J. Appl. Math., 2014 (2014), 591638. http://dx.doi.org/10.1155/2014/591638 doi: 10.1155/2014/591638
    [5] S. Artidiello, A. Cordero, J. Torregrosa, M. Vassileva, Two weighted-order classes of iterative root-finding methods, Int. J. Comput. Math., 92 (2015), 1790–1805. http://dx.doi.org/10.1080/00207160.2014.887201 doi: 10.1080/00207160.2014.887201
    [6] R. Behl, A. Cordero, S. Motsa, J. Torregrosa, A new efficient and optimal sixteenth-order scheme for simple roots of nonlinear equations, Bull. Math. Soc. Sci. Math. Roumanie, 60 (2017), 127–140.
    [7] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Am. Math. Soc., 11 (1984), 85–141.
    [8] P. Blanchard, The dynamics of Newton's method, Proceedings of Symposia in Applied Mathematics, 49 (1994), 139–154.
    [9] D. Brkić, A note on explicit approximations to Colebrook's friction factor in rough pipes under highly turbulent cases, Int. J. Heat Mass Tran., 93 (2016), 513–515. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.109 doi: 10.1016/j.ijheatmasstransfer.2015.08.109
    [10] B. Campos, J. Canela, P. Vindel, Dynamics of Newton-like root finding methods, Numer. Algor., 93 (2023), 1453–1480. http://dx.doi.org/10.1007/s11075-022-01474-w doi: 10.1007/s11075-022-01474-w
    [11] P. Chand, F. Chicharro, N. Garrido, P. Jain, Design and complex dynamics of Potra–Pták-Type optimal methods for solving nonlinear equations and its applications, Mathematics, 7 (2019), 942. http://dx.doi.org/10.3390/math7100942 doi: 10.3390/math7100942
    [12] F. Chicharro, A. Cordero, J. Torregrosa, Drawing dynamical parameters planes of iterative families and methods, Sci. World J., 2013 (2013), 780153. http://dx.doi.org/10.1155/2013/780153 doi: 10.1155/2013/780153
    [13] F. Chicharro, A. Cordero, N. Garrido, J. Torregrosa, On the choice of the best members of the Kim family and the improvement of its convergence, Math. Method. Appl. Sci., 43 (2020), 8051–8066. http://dx.doi.org/10.1002/mma.6014 doi: 10.1002/mma.6014
    [14] C. Chun, Construction of Newton-like iterative methods for solving nonlinear equations, Numer. Math., 104 (2006), 297–315. http://dx.doi.org/10.1007/s00211-006-0025-2 doi: 10.1007/s00211-006-0025-2
    [15] C. Chun, B. Neta, J. Kozdon, M. Scott, Choosing weight functions in iterative methods for simple roots, Appl. Math. Comput., 227 (2014), 788–800. http://dx.doi.org/10.1016/j.amc.2013.11.084 doi: 10.1016/j.amc.2013.11.084
    [16] A. Cordero, J. García-Maimó, J. Torregrosa, M. Vassileva, P. Vindel, Chaos in King's iterative family, Appl. Math. Lett., 26 (2013), 842–848. http://dx.doi.org/10.1016/j.aml.2013.03.012 doi: 10.1016/j.aml.2013.03.012
    [17] A. Cordero, J. Torregrosa, Variants of Newton's method using fifth-order quadrature formulas, Appl. Math. Comput., 190 (2007), 686–698. http://dx.doi.org/10.1016/j.amc.2007.01.062 doi: 10.1016/j.amc.2007.01.062
    [18] A. Cordero, J. Torregrosa, On the design of optimal iterative methods for solving nonlinear equations, In: Advances in iterative methods for nonlinear equations, Cham: Springer, 2016, 79–111. http://dx.doi.org/10.1007/978-3-319-39228-8_5
    [19] R. Devaney, A first course in chaotic dynamical systems: theory and experiment, New York: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429280665
    [20] R. Devaney, The Mandelbrot set, the Farey tree, and the Fibonacci sequence, American Mathematical Monthly, 106 (1999), 289–302. http://dx.doi.org/10.2307/2589552 doi: 10.2307/2589552
    [21] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France, 47 (1919), 161–271. http://dx.doi.org/10.24033/BSMF.998 doi: 10.24033/BSMF.998
    [22] Y. Geum, Study on the dynamical analysis of a family of third-order multiple zero finders, Eur. J. Pure Appl. Math., 16 (2023) 2775–2785. http://dx.doi.org/10.29020/nybg.ejpam.v16i4.4986 doi: 10.29020/nybg.ejpam.v16i4.4986
    [23] P. Jarratt, Some fourth order multipoint iterative methods for solving equations, Math. Comput., 20 (1966), 434–437.
    [24] G. Julia, Mémoire sur l'iteration des fonctions rationnelles, J. Math. Pure. Appl., 1 (1918), 47–245.
    [25] M. Kansal, H. Sharma, Analysis of optimal iterative methods from a dynamical point of view by studying their stability properties, J. Math. Chem., 62 (2024), 198–221. http://dx.doi.org/10.1007/s10910-023-01523-2 doi: 10.1007/s10910-023-01523-2
    [26] M. Khirallah, A. Alkhomsan, Convergence and Stability of Optimal two-step fourth-order and its expanding to sixth order for solving non linear equations, Eur. J. Pure Appl. Math., 15 (2022), 971–991. http://dx.doi.org/10.29020/nybg.ejpam.v15i3.4397 doi: 10.29020/nybg.ejpam.v15i3.4397
    [27] H. Kung, J. Traub, Optimal order of one-point and multi-point iteration, J. ACM, 21 (1974), 643–651. http://dx.doi.org/10.1145/321850.321860 doi: 10.1145/321850.321860
    [28] G. Layek, An introduction to dynamical systems and chaos, New Delhi: Springer, 2015. http://dx.doi.org/10.1007/978-81-322-2556-0
    [29] A. Ostrowski, Solutions of equations and systems of equations, New York: Academic Press, 1966.
    [30] M. Petković, B. Neta, L. Petković, J. Džunić, Multipoint methods for solving nonlinear equations: a survey, Appl. Math. Comput., 226 (2014), 635–660. http://dx.doi.org/10.1016/j.amc.2013.10.072 doi: 10.1016/j.amc.2013.10.072
    [31] S. Qureshi, A. Soomro, A. Shaikh, E. Hincal, N. Gokbulut, A novel multistep iterative technique for models in medical sciences with complex dynamics, Comput. Math. Method. M., 2022 (2022), 7656451. http://dx.doi.org/10.1155/2022/7656451 doi: 10.1155/2022/7656451
    [32] K. Sayevand, R. Erfanifar, H. Esmaeili, On computational efficiency and dynamical analysis for a class of novel multi-step iterative schemes, Int. J. Appl. Comput. Math., 6 (2020), 163. http://dx.doi.org/10.1007/s40819-020-00919-x doi: 10.1007/s40819-020-00919-x
    [33] M. Scott, B. Neta, C. Chun, Basin attractors for various methods, Appl. Math. Comput., 218 (2011), 2584–2599. http://dx.doi.org/10.1016/j.amc.2011.07.076 doi: 10.1016/j.amc.2011.07.076
    [34] J. Traub, Iterative methods for the solution of equations, New York: Chelsea Publishing Company, 1982.
    [35] S. Yaseen, F. Zafar, H. Alsulami, An efficient Jarratt-type iterative method for solving nonlinear global positioning system problems, Axioms, 12 (2023), 562. http://dx.doi.org/10.3390/axioms12060562 doi: 10.3390/axioms12060562
    [36] T. Zhanlav, C. Chun, K. Otgondorj, Construction and dynamics of efficient high-order methods for nonlinear systems, Int. J. Comp. Meth., 19 (2022), 2250020. http://dx.doi.org/10.1142/S0219876222500207 doi: 10.1142/S0219876222500207
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(638) PDF downloads(64) Cited by(2)

Article outline

Figures and Tables

Figures(7)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog