Research article

Stability and bifurcation of a delayed diffusive predator-prey model affected by toxins

  • Received: 07 April 2023 Revised: 30 June 2023 Accepted: 02 July 2023 Published: 11 July 2023
  • MSC : 34K18, 35B32

  • In this work, a diffusive predator-prey model with the effects of toxins and delay is considered. Initially, we investigated the presence of solutions and the stability of the system. Then, we examined the local stability of the equilibria and Hopf bifurcation generated by delay, as well as the global stability of the equilibria using a Lyapunov function. In addition, we extract additional results regarding the presence and nonexistence of non-constant steady states in this model by taking into account the influence of diffusion. We show several numerical simulations to validate our theoretical findings.

    Citation: Ming Wu, Hongxing Yao. Stability and bifurcation of a delayed diffusive predator-prey model affected by toxins[J]. AIMS Mathematics, 2023, 8(9): 21943-21967. doi: 10.3934/math.20231119

    Related Papers:

  • In this work, a diffusive predator-prey model with the effects of toxins and delay is considered. Initially, we investigated the presence of solutions and the stability of the system. Then, we examined the local stability of the equilibria and Hopf bifurcation generated by delay, as well as the global stability of the equilibria using a Lyapunov function. In addition, we extract additional results regarding the presence and nonexistence of non-constant steady states in this model by taking into account the influence of diffusion. We show several numerical simulations to validate our theoretical findings.



    加载中


    [1] H. Li, X. Li, X. Yang, H. Zhang, Analyzing the relationship between developed land area and nighttime light emissions of 36 Chinese cities, Remote Sens., 11 (2018), 10. https://doi.org/10.3390/rs11010010 doi: 10.3390/rs11010010
    [2] A. L. Jensen, J. S. Marshall, Application of a surplus production model to assess environmental impacts on exploited populations of daphnia pulex in the laboratory, Environ. Pollut. Ser. A, Ecol. Biol., 28 (1982), 273–280. https://doi.org/10.1016/0143-1471(82)90143-X doi: 10.1016/0143-1471(82)90143-X
    [3] M. Liu, K. Wang, Persistence and extinction of a single-species population system in a polluted environment with random perturbations and impulsive toxicant input, Chaos Soliton. Fract., 45 (2012), 1541–1550. https://doi.org/10.1016/j.chaos.2012.08.011 doi: 10.1016/j.chaos.2012.08.011
    [4] T. G. Hallam, C. E. Clark, R. R. Lassiter, Effects of toxicants on populations: a qualitative approach Ⅰ. equilibrium environmental exposure, Ecol. Model., 18 (1983), 291–304. https://doi.org/10.1016/0304-3800(83)90019-4 doi: 10.1016/0304-3800(83)90019-4
    [5] T. G. Hallam, C. E. Clark, G. S. Jordan, Effects of toxicants on populations: a qualitative approach Ⅱ. first order kinetics, J. Math. Biol., 18 (1983), 25–37. https://doi.org/10.1007/BF00275908 doi: 10.1007/BF00275908
    [6] T. G. Hallam, J. T. de Luna, Effects of toxicants on populations: a qualitative: approach Ⅲ. environmental and food chain pathways, J. Theor. Biol., 109 (1984), 411–429. https://doi.org/10.1016/S0022-5193(84)80090-9 doi: 10.1016/S0022-5193(84)80090-9
    [7] T. Das, R. N. Mukherjee, K. S. Chaudhuri, Harvesting of a prey-predator fishery in the presence of toxicity, Appl. Math. Model., 33 (2009), 2282–2292. https://doi.org/10.1016/j.apm.2008.06.008 doi: 10.1016/j.apm.2008.06.008
    [8] K. Chakraborty, K. Das, Modeling and analysis of a two-zooplankton one-phytoplankton system in the presence of toxicity, Appl. Math. Model., 39 (2015), 1241–1265. https://doi.org/10.1016/j.apm.2014.08.004 doi: 10.1016/j.apm.2014.08.004
    [9] T. K. Ang, H. M. Safuan, Harvesting in a toxicated intraguild predator-prey fishery model with variable carrying capacity, Chaos Soliton. Fract., 126 (2019), 158–168. https://doi.org/10.1016/j.chaos.2019.06.004 doi: 10.1016/j.chaos.2019.06.004
    [10] N. Juneja, K. Agnihotri, Dynamical behavior of two toxic releasing competing species in presence of predator, Differ. Equ. Dyn. Syst., 28 (2020), 587–601. https://doi.org/10.1007/s12591-019-00512-9 doi: 10.1007/s12591-019-00512-9
    [11] Y. Du, B. Niu, J. Wei, Two delays induce Hopf bifurcation and double Hopf bifurcation in a diffusive Leslie-Gower predator-prey system, Chaos, 29 (2019), 013101. https://doi.org/10.1063/1.5078814 doi: 10.1063/1.5078814
    [12] S. Chen, Y. Lou, J. Wei, Hopf bifurcation in a delayed reaction-diffusion-advection population model, J. Differ. Equations, 264 (2018), 5333–5359. https://doi.org/10.1016/j.jde.2018.01.008 doi: 10.1016/j.jde.2018.01.008
    [13] X. Zhang, Q. An, L. Wang, Spatiotemporal dynamics of a delayed diffusive ratio-dependent predator-prey model with fear effect, Nonlinear Dyn., 105 (2021), 3775–3790. https://doi.org/10.1007/s11071-021-06780-x doi: 10.1007/s11071-021-06780-x
    [14] X. Zhang, H. Zhu, Q. An, Dynamics analysis of a diffusive predator-prey model with spatial memory and nonlocal fear effect, J. Math. Anal. Appl., 525 (2023), 127123. https://doi.org/10.1016/j.jmaa.2023.127123 doi: 10.1016/j.jmaa.2023.127123
    [15] N. N. Pelen, M. E. Koksal, Necessary and sufficient conditions for the existence of periodic solutions in a predator-prey model, Electron. J. Differ. Equ., 2017 (2017), 1–12.
    [16] D. Pal, G. S. Mahapatra, Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis, Chaos Soliton. Fract., 87 (2016), 109–124. https://doi.org/10.1016/j.chaos.2016.03.019 doi: 10.1016/j.chaos.2016.03.019
    [17] D. Pal, G. P. Samanta, G. S. Mahapatra, Selective harvesting of two competing fish species in the presence of toxicity with time delay, Appl. Math. Comput., 313 (2017), 74–93. https://doi.org/10.1016/j.amc.2017.05.069 doi: 10.1016/j.amc.2017.05.069
    [18] X. Zhang, H. Zhao, Dynamics and pattern formation of a diffusive predator-prey model in the presence of toxicity, Nonlinear Dyn., 95 (2019), 2163–2179. https://doi.org/10.1007/s11071-018-4683-2 doi: 10.1007/s11071-018-4683-2
    [19] H. Zhu, X. Zhang, G. Wang, L. Wang, Effect of toxicant on the dynamics of a delayed diffusive predator-prey model, J. Appl. Math. Comput., 69 (2023), 355–379. https://doi.org/10.1007/s12190-022-01744-9 doi: 10.1007/s12190-022-01744-9
    [20] C. V. Pao, Nonlinear parabolic and elliptic equations, Springer Science & Business Media, 2012.
    [21] N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations, J. Differ. Equations, 33 (1979), 201–225. https://doi.org/10.1016/0022-0396(79)90088-3 doi: 10.1016/0022-0396(79)90088-3
    [22] Y. Lou, W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79–131. https://doi.org/10.1006/jdeq.1996.0157 doi: 10.1006/jdeq.1996.0157
    [23] P. Y. H. Pang, M. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinb. Sect. A: Math., 133 (2003), 919–942. https://doi.org/10.1017/S0308210500002742 doi: 10.1017/S0308210500002742
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(979) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog