In this work, a diffusive predator-prey model with the effects of toxins and delay is considered. Initially, we investigated the presence of solutions and the stability of the system. Then, we examined the local stability of the equilibria and Hopf bifurcation generated by delay, as well as the global stability of the equilibria using a Lyapunov function. In addition, we extract additional results regarding the presence and nonexistence of non-constant steady states in this model by taking into account the influence of diffusion. We show several numerical simulations to validate our theoretical findings.
Citation: Ming Wu, Hongxing Yao. Stability and bifurcation of a delayed diffusive predator-prey model affected by toxins[J]. AIMS Mathematics, 2023, 8(9): 21943-21967. doi: 10.3934/math.20231119
In this work, a diffusive predator-prey model with the effects of toxins and delay is considered. Initially, we investigated the presence of solutions and the stability of the system. Then, we examined the local stability of the equilibria and Hopf bifurcation generated by delay, as well as the global stability of the equilibria using a Lyapunov function. In addition, we extract additional results regarding the presence and nonexistence of non-constant steady states in this model by taking into account the influence of diffusion. We show several numerical simulations to validate our theoretical findings.
[1] | H. Li, X. Li, X. Yang, H. Zhang, Analyzing the relationship between developed land area and nighttime light emissions of 36 Chinese cities, Remote Sens., 11 (2018), 10. https://doi.org/10.3390/rs11010010 doi: 10.3390/rs11010010 |
[2] | A. L. Jensen, J. S. Marshall, Application of a surplus production model to assess environmental impacts on exploited populations of daphnia pulex in the laboratory, Environ. Pollut. Ser. A, Ecol. Biol., 28 (1982), 273–280. https://doi.org/10.1016/0143-1471(82)90143-X doi: 10.1016/0143-1471(82)90143-X |
[3] | M. Liu, K. Wang, Persistence and extinction of a single-species population system in a polluted environment with random perturbations and impulsive toxicant input, Chaos Soliton. Fract., 45 (2012), 1541–1550. https://doi.org/10.1016/j.chaos.2012.08.011 doi: 10.1016/j.chaos.2012.08.011 |
[4] | T. G. Hallam, C. E. Clark, R. R. Lassiter, Effects of toxicants on populations: a qualitative approach Ⅰ. equilibrium environmental exposure, Ecol. Model., 18 (1983), 291–304. https://doi.org/10.1016/0304-3800(83)90019-4 doi: 10.1016/0304-3800(83)90019-4 |
[5] | T. G. Hallam, C. E. Clark, G. S. Jordan, Effects of toxicants on populations: a qualitative approach Ⅱ. first order kinetics, J. Math. Biol., 18 (1983), 25–37. https://doi.org/10.1007/BF00275908 doi: 10.1007/BF00275908 |
[6] | T. G. Hallam, J. T. de Luna, Effects of toxicants on populations: a qualitative: approach Ⅲ. environmental and food chain pathways, J. Theor. Biol., 109 (1984), 411–429. https://doi.org/10.1016/S0022-5193(84)80090-9 doi: 10.1016/S0022-5193(84)80090-9 |
[7] | T. Das, R. N. Mukherjee, K. S. Chaudhuri, Harvesting of a prey-predator fishery in the presence of toxicity, Appl. Math. Model., 33 (2009), 2282–2292. https://doi.org/10.1016/j.apm.2008.06.008 doi: 10.1016/j.apm.2008.06.008 |
[8] | K. Chakraborty, K. Das, Modeling and analysis of a two-zooplankton one-phytoplankton system in the presence of toxicity, Appl. Math. Model., 39 (2015), 1241–1265. https://doi.org/10.1016/j.apm.2014.08.004 doi: 10.1016/j.apm.2014.08.004 |
[9] | T. K. Ang, H. M. Safuan, Harvesting in a toxicated intraguild predator-prey fishery model with variable carrying capacity, Chaos Soliton. Fract., 126 (2019), 158–168. https://doi.org/10.1016/j.chaos.2019.06.004 doi: 10.1016/j.chaos.2019.06.004 |
[10] | N. Juneja, K. Agnihotri, Dynamical behavior of two toxic releasing competing species in presence of predator, Differ. Equ. Dyn. Syst., 28 (2020), 587–601. https://doi.org/10.1007/s12591-019-00512-9 doi: 10.1007/s12591-019-00512-9 |
[11] | Y. Du, B. Niu, J. Wei, Two delays induce Hopf bifurcation and double Hopf bifurcation in a diffusive Leslie-Gower predator-prey system, Chaos, 29 (2019), 013101. https://doi.org/10.1063/1.5078814 doi: 10.1063/1.5078814 |
[12] | S. Chen, Y. Lou, J. Wei, Hopf bifurcation in a delayed reaction-diffusion-advection population model, J. Differ. Equations, 264 (2018), 5333–5359. https://doi.org/10.1016/j.jde.2018.01.008 doi: 10.1016/j.jde.2018.01.008 |
[13] | X. Zhang, Q. An, L. Wang, Spatiotemporal dynamics of a delayed diffusive ratio-dependent predator-prey model with fear effect, Nonlinear Dyn., 105 (2021), 3775–3790. https://doi.org/10.1007/s11071-021-06780-x doi: 10.1007/s11071-021-06780-x |
[14] | X. Zhang, H. Zhu, Q. An, Dynamics analysis of a diffusive predator-prey model with spatial memory and nonlocal fear effect, J. Math. Anal. Appl., 525 (2023), 127123. https://doi.org/10.1016/j.jmaa.2023.127123 doi: 10.1016/j.jmaa.2023.127123 |
[15] | N. N. Pelen, M. E. Koksal, Necessary and sufficient conditions for the existence of periodic solutions in a predator-prey model, Electron. J. Differ. Equ., 2017 (2017), 1–12. |
[16] | D. Pal, G. S. Mahapatra, Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis, Chaos Soliton. Fract., 87 (2016), 109–124. https://doi.org/10.1016/j.chaos.2016.03.019 doi: 10.1016/j.chaos.2016.03.019 |
[17] | D. Pal, G. P. Samanta, G. S. Mahapatra, Selective harvesting of two competing fish species in the presence of toxicity with time delay, Appl. Math. Comput., 313 (2017), 74–93. https://doi.org/10.1016/j.amc.2017.05.069 doi: 10.1016/j.amc.2017.05.069 |
[18] | X. Zhang, H. Zhao, Dynamics and pattern formation of a diffusive predator-prey model in the presence of toxicity, Nonlinear Dyn., 95 (2019), 2163–2179. https://doi.org/10.1007/s11071-018-4683-2 doi: 10.1007/s11071-018-4683-2 |
[19] | H. Zhu, X. Zhang, G. Wang, L. Wang, Effect of toxicant on the dynamics of a delayed diffusive predator-prey model, J. Appl. Math. Comput., 69 (2023), 355–379. https://doi.org/10.1007/s12190-022-01744-9 doi: 10.1007/s12190-022-01744-9 |
[20] | C. V. Pao, Nonlinear parabolic and elliptic equations, Springer Science & Business Media, 2012. |
[21] | N. D. Alikakos, An application of the invariance principle to reaction-diffusion equations, J. Differ. Equations, 33 (1979), 201–225. https://doi.org/10.1016/0022-0396(79)90088-3 doi: 10.1016/0022-0396(79)90088-3 |
[22] | Y. Lou, W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differ. Equations, 131 (1996), 79–131. https://doi.org/10.1006/jdeq.1996.0157 doi: 10.1006/jdeq.1996.0157 |
[23] | P. Y. H. Pang, M. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinb. Sect. A: Math., 133 (2003), 919–942. https://doi.org/10.1017/S0308210500002742 doi: 10.1017/S0308210500002742 |