Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article Special Issues

Existence and uniqueness of radial solution for the elliptic equation system in an annulus

  • This article discusses the existence and uniqueness of radial solution for the elliptic equation system

    {u=f(|x|, u, v, |u|),xΩ,v=g(|x|, u, v, |v|),xΩ,u|Ω=0,v|Ω=0,

    where Ω={xRN:r1<|x|<r2},N3,f,g:[r1,r2]×R×R×R+R are continuous. Due to the appearance of the gradient term in the nonlinearity, the equation system has no variational structure and the variational method cannot be applied to it directly. We will give the correlation conditions of f and g, that is, f and g are superlinear or sublinear, and prove the existence and uniqueness of radial solutions by using Leray-Schauder fixed point theorem.

    Citation: Dan Wang, Yongxiang Li. Existence and uniqueness of radial solution for the elliptic equation system in an annulus[J]. AIMS Mathematics, 2023, 8(9): 21929-21942. doi: 10.3934/math.20231118

    Related Papers:

    [1] Ruyun Ma, Dongliang Yan, Liping Wei . Global bifurcation of sign-changing radial solutions of elliptic equations of order 2m in annular domains. AIMS Mathematics, 2020, 5(5): 4909-4916. doi: 10.3934/math.2020313
    [2] Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
    [3] Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini . Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998
    [4] Limin Guo, Jiafa Xu, Donal O'Regan . Positive radial solutions for a boundary value problem associated to a system of elliptic equations with semipositone nonlinearities. AIMS Mathematics, 2023, 8(1): 1072-1089. doi: 10.3934/math.2023053
    [5] Dumitru Baleanu, S. Hemalatha, P. Duraisamy, P. Pandiyan, Subramanian Muthaiah . Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions. AIMS Mathematics, 2021, 6(12): 13004-13023. doi: 10.3934/math.2021752
    [6] Rui Wu, Yi Cheng, Ravi P. Agarwal . Rotational periodic solutions for fractional iterative systems. AIMS Mathematics, 2021, 6(10): 11233-11245. doi: 10.3934/math.2021651
    [7] Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299
    [8] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [9] Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071
    [10] Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510
  • This article discusses the existence and uniqueness of radial solution for the elliptic equation system

    {u=f(|x|, u, v, |u|),xΩ,v=g(|x|, u, v, |v|),xΩ,u|Ω=0,v|Ω=0,

    where Ω={xRN:r1<|x|<r2},N3,f,g:[r1,r2]×R×R×R+R are continuous. Due to the appearance of the gradient term in the nonlinearity, the equation system has no variational structure and the variational method cannot be applied to it directly. We will give the correlation conditions of f and g, that is, f and g are superlinear or sublinear, and prove the existence and uniqueness of radial solutions by using Leray-Schauder fixed point theorem.



    In this article we discuss the existence and uniqueness of radial solution for the elliptic equation system

    {u=f(|x|, u, v, |u|),xΩ,v=g(|x|, u, v, |v|),xΩ,u|Ω=0,v|Ω=0 (1.1)

    in an annular domain Ω={xRN:r1<|x|<r2}, where N3,0<r1<r2<,f,g:[r1,r2]×R×R×R+R are continuous.

    This problem arises in many different areas of applied mathematics and physics, for instance, incineration theory of gases, solid state physics, variational methods and optimal control. Therefore, there have been many research results, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] and references therein.

    The authors of [1] considered the Dirichlet elliptic system

    {u+λk1(|x|)f(u, v)=0,v+λk2(|x|)g(u, v)=0,inΩ,

    where Ω={xRN:R1<|x|<R2},R1,R2>0,f,g:[0,)×[0,)(0,),λ is a positive real parameter. By establishing the strong maximum principle, applying upper and lower solutions method and fixed point index results proved the existence of positive radial solutions in the condition (A).

    (A)flim(u,v)f(u,v)u+v=,glim(u,v)g(u,v)u+v=.

    In [2], Lee replaced the annular domain with an exterior domain.

    In [4], the authors used topological methods to prove the existence of positive solutions for semilinear elliptic systems of the form

    {u=g(x, u, v),xΩ,v=f(x, u, v),xΩ,u>0,v>0,inΩ,u|Ω=0,v|Ω=0,

    where Ω is a bounded domain in R2, f,g:Ω×R2R are continuous. Similarly, in [8], the authors also obtain a priori estimates, and then use Leray-Schauder topological degree theory to establish the existence of positive radial solutions vanishing at infinity.

    In addition to the above domain, there are ball domain, see [3,12,13,17,18,20,21]. In [3], Hai considered the boundary value problem

    {u=λf(v),v=μg(u),inB,u=v=0,onB,

    where B is the open unit ball in RN, f,g:R+R+. They establish upper and lower estimates, and the existence and uniqueness of positive solutions are obtained in the case of f and g superlinear. In [17], the above authors proved the existence and multiplicity of positive radial solutions for the infinite semipositone/positone superlinear systems.

    Recently, in [23], the authors used the fixed point index theory to study the existence of positive radial solutions for a system of boundary value problems with semipositone second order elliptic equations

    {φ+k(|z|)f(φ,ϕ)=0,zΩ,ϕ+k(|z|)g(φ,ϕ)=0,zΩ,αφ+βφn=0,αϕ+βϕn=0,|z|=R1γφ+δφn=0,γϕ+δϕn=0,|z|=R2,

    where α,β,γ,δ0,f,g:C(R+×R+,R) and satisfy

    f(u,v),g(u,v)M,u,vR+.

    In [24], Li discussed the existence of positive radial solutions of single elliptic equation. Inspired by the aforementioned article, we extend the results of [24] to the equation system.

    The purpose of this article is to obtain existence and uniqueness results of radial solution for the elliptic equation system. However, we note that in most of the article on nonlinear differential equations the nonlinear terms are usually assumed to be nonnegative, see [1,2,3,17,18,21,22,23]. However, in this article, we do not assume that the nonlinear terms are nonnegative, f,gC([r1,r2]×R2×R+,R). Using Leray-Schauder fixed point theorem, we prove the main results in the case of f and g superlinear or sublinear.

    As usual, writing r=|x|, BVP (1.1) becomes the ordinary differential equation system boundary value problem

    {u(r)N1ru(r)=f(r, u(r), v(r), |u(r)|),r[r1,r2],v(r)N1rv(r)=g(r, u(r), v(r), |v(r)|),r[r1,r2],u(r1)=u(r2)=0,v(r1)=v(r2)=0. (1.2)

    By discussing BVP (1.2) we will obtain radial solution of BVP (1.1).

    Our main results are as follows:

    Theorem 1.1. Let f,g:[r1,r2]×R×R×R+R be continuous. If f and g satisfy the following conditions:

    (F0) for any M>0, there exists a positive monotone nondecreasing continuous function GM:[0,+](0,+) satisfying

    +0ρdρGM(ρ)=+, (1.3)

    such that

    |f(r,u,v,ξ)|GM(|ξ|),|g(r,u,v,η)|GM(|η|), (1.4)

    where r[r1,r2],|u|M,|v|M,ξ,ηR+;

    (F1) there exist positive constants a,b,c,d0, satisfying r2N1r1N1((r1r2)22(a+b)+c+d)<1 and e>0, such that

    f(r,u,v,ξ)u+g(r,u,v,η)vau2+bv2+cξ2+dη2+e, (1.5)

    where (r,u,v)[r1,r2]×R×R,ξ,ηR+. Then BVP (1.1) has at least one radial solution.

    Remark 1.1. Condition (F1) allows f(r,u,v,ξ) and g(r,u,v,η) to grow superlinearly with respect to u,v,ξ,η, while the Nagumo-type condition (F0) restricts f(r,u,v,ξ) and g(r,u,v,η) to grow at most quadratically with respect to ξ and η, respectively.

    Next we give the uniqueness condition.

    Theorem 1.2. Let f,g:[r1,r2]×R×R×R+R be continuous. If f and g satisfy (F0) and the following condition:

    (F2) there exist positive constants a,b,c,d0, satisfying r2N1r1N1((r1r2)22(a+b)+c+d)<1, such that

    (f(r,u2,v2,ξ2)f(r,u1,v1,ξ1))(u2u1)+(g(r,u2,v2,η2)g(r,u1,v1,η1))(v2v1)a(u2u1)2+b(v2v1)2+c(ξ2ξ1)2+d(η2η1)2, (1.6)

    where (r,ui,vi)[r1,r2]×R×R,ξi,ηiR+,i=1,2. Then BVP (1.1) has a unique radial solution.

    The main innovations of this article are as follows: First, the nonlinearities are sign-changing. Second, we replace the previous independent conditions with the correlation conditions of f and g, which can better reflect the characteristics of the equations. Finally, as far as we know, there are few articles discussing the elliptic equation system of the nonlinear terms with gradient term, and this article is one of them.

    In Section 2, we will present some preliminaries. The proofs of Theorems 1.1 and 1.2 are based on the Leray-Schauder fixed point theorem, which will be given in Section 3.

    Let I=[r1,r2]. C(I) denote the Banach space of all continuous function on I with norm uC=maxtI|u(t)|. C1(I) denote the Banach space of all 1-order continuous differentiable function on I with norm uC1=maxtI{uC,uC}. L2(I) denote the Hilbert space composed of all Lebesgue square integrable functions on I with inner product (u,v)=10u(t)v(t)dt, and its inner product norm is u2=(10|u(t)|2dt)12. Let H1(I)={uC(I):u be absolutely continuous on I, and uL2(I)}.

    Let X and Y be Banach spaces with norms X, Y, respectively. X×Y denotes the product space of X and Y, forming the Banach space with norm (x,y)=max{xX,yY}.

    For the case of a single equation, given hC(I), we consider the linear boundary value problem (LBVP)

    {u(r)N1ru(r)=h(r),rI,u(r1)=u(r2)=0. (2.1)

    Lemma 2.1. If hC(I), then the solution of LBVP (2.1) satisfies

    u22(r1r2)22u22.

    Proof. Set uC2(I) is the solution of LBVP (2.1), then from the Hölder inequality, we have

    u22=r2r1|rr1u(s)ds|2drr2r1(rr1)dru22(r1r2)22u22.

    The proof of Lemma 2.1 is completed.

    Given (h1,h2)C(I)×C(I), we consider the linear boundary value problem corresponding to BVP (1.2)

    {u(r)N1ru(r)=h1(r),r[r1,r2],v(r)N1rv(r)=h2(r),r[r1,r2],u(r1)=u(r2)=0,v(r1)=v(r2)=0. (2.2)

    Lemma 2.2. For every (h1,h2)C(I)×C(I), LBVP (2.2) has a unique solution (u,v):=S(h1,h2)C2(I)×C2(I). Moreover, the solution operator S:C(I)×C(I)C1(I)×C1(I) is a completely continuous linear operator.

    Proof. The case of a single space is known, see [24] Lemma 2.1. We give the proof of the solution operator is completely continuous in product space.

    Set

    ϕ(r)=1N2[1r1N21rN2],ψ(r)=1N2[1rN21r2N2],rI.

    By direct computing we have

    (rN1ϕ(r))=0,(rN1ψ(r))=0,rI.
    rN1(ϕ(r)ψ(r)ϕ(r)ψ(r))=1N2(1r1N21r2N2)

    We define a function G:\; I\times I\rightarrow \mathbb{R}^+ by

    \begin{align} G(r, \; s) = \left \{ \begin{array}{l} \frac{1}{\rho}\; \phi(r)\; \psi(s), \; \; r_1\le r\le s\le r_2, \\[10pt] \frac{1}{\rho}\; \phi(s)\; \psi(r), \; \; r_1\le s\le r\le r_2. \end{array} \right. \end{align} (2.3)

    Then G\in C(I\times I) . We verify that G(r, \; s) is the Green function of the LBVP (2.2), namely

    \begin{align} (u(r), v(r)) = \bigg(\int_{r_1}^{r_2}G(r, s)\; h_1(s)ds, \int_{r_1}^{r_2} G(r, s)\; h_2(s)ds\bigg)\triangleq S(h_1, \; h_2)(r), \; \; r\in I \end{align} (2.4)

    is the unique solution of LBVP (2.2). By the above and the definition of G , we have

    u(r) = \frac{1}{\rho}\int_{r_1}^r \phi(s)\; \psi(r)\; h_1(s)ds+\frac{1}{\rho}\int_r^{r_2} \phi(r)\; \psi(s)\; h_1(s)ds,
    v(r) = \frac{1}{\rho}\int_{r_1}^r \phi(s)\; \psi(r)\; h_2(s)ds+\frac{1}{\rho}\int_r^{r_2} \phi(r)\; \psi(s)\; h_2(s)ds.

    By differentiating, we get that

    \begin{align} u'(r) = \frac{1}{\rho}\int_{r_1}^r \phi(s)\; \psi'(r)\; h_1(s)ds+\frac{1}{\rho}\int_r^{r_2} \phi'(r)\; \psi(s)\; h_1(s)ds, \end{align} (2.5)
    \begin{align} v'(r) = \frac{1}{\rho}\int_{r_1}^r \phi(s)\; \psi'(r)\; h_2(s)ds+\frac{1}{\rho}\int_r^{r_2} \phi'(r)\; \psi(s)\; h_2(s)ds. \end{align} (2.6)

    Hence, we see that (u(r), \; v(r)) is a solution of LBVP (2.2) by direct calculation. By the maximum principle, LBVP (2.2) has only one solution. From (2.4)–(2.6), we see that the solution operator S: C(I)\times C(I)\rightarrow C^1(I)\times C^1(I) is a completely continuous linear operator.

    The proof of Lemma 2.2 is completed.

    Lemma 2.3. Let f, \; g:[r_1, \; r_2]\times\mathbb{R}\times\mathbb{R}\times\mathbb{R}^{+}\rightarrow \mathbb{R} be continuous and satisty (F0). For all M > 0 , there exist constants M_1 = M_1(M) > 0, \; M_2 = M_2(M) > 0 , such that if the solution (u, \; v) of BVP (1.2) satisfis \|(u, \; v)\|_C\le M , then we have

    \|(u', \; v')\|_C\le \max\{M_1, \; M_2\}.

    Proof. Set M > 0 . By (1.3), there exist constants M_1, \; M_2 > 0 , such that

    \begin{align} \int_0^{M_1}\frac{\rho\; d\rho}{G_{M}(\rho)} > 2M;\; \int_0^{M_2}\frac{\sigma\; d\sigma}{G_{M}(\sigma)} > 2M. \end{align} (2.7)

    Let (u, \; v)\in C^2(I)\times C^2(I) is a solution of BVP (1.2) which satisfies \|(u, \; v)\|_C\le M , the following proof that \|(u', \; v')\|_C\le \max\{M_1, \; M_2\} . Suppose (u'(r), \; v'(r)) is not equal to 0 , then there exists t_0\in (r_1, \; r_2) and t_1\in I, \; t_0\ne t_1 , such that (u'(t_0), \; v'(t_0)) = (0, \; 0), \; \|(u', \; v')\|_C = \max\{|u'(t_1)|, \; |v'(t_1)|\} > 0 . There are eight cases as follows:

    1)\; u'(t_{1}) > 0, \; v'(t_{1}) > 0, \; t_{0} < t_{1} ;

    2)\; u'(t_{1}) > 0, \; v'(t_{1}) < 0, \; t_{0} < t_{1} ;

    3)\; u'(t_{1}) < 0, \; v'(t_{1}) > 0, \; t_{0} < t_{1} ;

    4)\; u'(t_{1}) < 0, \; v'(t_{1}) < 0, \; t_{0} < t_{1} ;

    5)\; u'(t_{1}) > 0, \; v'(t_{1}) > 0, \; t_{1} < t_{0} ;

    6)\; u'(t_{1}) > 0, \; v'(t_{1}) < 0, \; t_{1} < t_{0} ;

    7)\; u'(t_{1}) < 0, \; v'(t_{1}) > 0, \; t_{1} < t_{0} ;

    8)\; u'(t_{1}) < 0, \; v'(t_{1}) < 0, \; t_{1} < t_{0} .

    We only prove case 1), other cases are similar. Set

    s_{1} = \sup\{r'\in [t_{0}, \; t_{1})|\; u'(r') = 0, \; v'(r') = 0\},

    then s_1 < t_1 , and (u'(s_1), \; v'(s_1)) = (0, \; 0) . When r\in (s_1, \; t_1] , we have u'(r) > 0, \; v'(r) > 0 . Hence,

    \left \{ \begin{array}{ll} u''(r)+\frac{N-1}{r}u'(r) = -f(r, \ u(r), \ v(r), \ |u'(r)|)\le G_{M}(|u'(r)|), \; \; r\in [s_{1}, \; t_{1}], \\[13pt] v''(r)+\frac{N-1}{r}v'(r) = -g(r, \ u(r), \ v(r), \ |v'(r)|)\le G_{M}(|v'(r)|), \; \; r\in [s_{1}, \; t_{1}]. \\ \end{array} \right.

    Hence, for all r\in [s_1, \; t_1] , we have

    \frac{u''(r)|u'(r)|+\frac{N-1}{r}{u'}^2(r)} {G_{M}(|u'(r)|)}\le |u'(r)|\; , \quad \frac{v''(r)|v'(r)|+\frac{N-1}{r}{v'}^2(r)} {G_{M}(|v'(r)|)}\le |v'(r)|.

    Integrating both sides of this inequality on [s_1, \; t_1] , and variable substitution \rho = |u'(r)|, \; \sigma = |v'(r)| , we obtain that

    \begin{eqnarray*} \int_0^{|u'(t_1)|}\frac{\rho\; d\rho}{G_M(\rho)}& = &\int_{s_1}^{t_1}\frac{u''(r)|u'(r)|}{G_M(|u'(r)|)}\; dr\\ &\le &\int_{s_1}^{t_1}\frac{u''(r)|u'(r)|}{G_M(|u'(r)|)}\; dr +\int_{s_1}^{t_1}\frac{\frac{N-1}{r}{u'}^2(r)}{G_M(|u'(r)|)}\; dr\\ &\le &\int_{s_1}^{t_1}|u'(r)|\; dr\\ & = &|u(t_1)|-|u(s_1)|\le 2M. \end{eqnarray*}

    By (2.7) it follows that

    |u'(t_1)| < M_1.

    Similarly, it can be obtained

    |v'(t_1)| < M_2.

    Therefore,

    \|(u', \; v')\|_C = \max\{\|u'\|_C, \; \|v'\|_C\} = \max\{|u'(t_1)|, \; |v'(t_1)|\}\le \max\{M_1, \; M_2\}.

    The proof of Lemma 2.3 is completed.

    Theorem 2.1. (Leray-Schauder fixed point theorem) [26,27] Let E be a Banach space, A: E\times E\rightarrow E\times E be a completely continuous mapping. If the solution set of the equation

    (u, \; v) = \lambda A(u, \; v), \; \; 0 < \lambda < 1

    is bounded in E\times E , then A has a fixed point.

    Proof of Theorem 1.1. We known LBVP (2.2) has a unique solution (u, \; v)\in C^2(I)\times C^2(I) by Lemma 2.2

    (u(r), \; v(r)) = \bigg(\int_{r_1}^{r_2}G(r, s)\; h_1(s)ds, \int_{r_1}^{r_2} G(r, s)\; h_2(s)ds\bigg), \; \; r, \; s\in I,

    where G(r, \; s) defined by (2.3). We make integral operator A: C^1(I)\times C^1(I)\rightarrow C^1(I)\times C^1(I) as follows:

    A(u, \; v) = \bigg(\int_{r_1}^{r_2}G(r, s)f(r, \; u(r), \; v(r), \; |u'(r)|)ds,
    \int_{r_1}^{r_2}G(r, s)g(r, \; u(r), \; v(r), \; |v'(r)|)ds\bigg), \; \; r\in I,

    then, A is a completely continuous linear operator. The solution of BVP (1.2) is equivalent to the fixed point of A . Next we prove that A has fixed point. We consider the equation

    \begin{align} (u, \; v) = \lambda A(u, \; v), \; \; \lambda\in (0, \; 1). \end{align} (3.1)

    Let (u, \; v)\in C^1(I)\times C^1(I) be the solution of (3.1), then, (u, \; v)\in C^2(I)\times C^2(I) satisfies the equations

    \begin{align} \left \{ \begin{array}{ll} -u''(r)-\frac{N-1}{r}u'(r) = \lambda f(r, \; u(r), \; v(r), \; |u'(r)|), \; \; r\in I, \\[10pt] -v''(r)-\frac{N-1}{r}v'(r) = \lambda g(r, \; u(r), \; v(r), \; |v'(r)|), \; \; r\in I, \\[10pt] u(r_1) = u(r_2) = 0, \; v(r_1) = v(r_2) = 0. \end{array} \right. \end{align} (3.2)

    Multiply both sides of the first formula of Eq (3.2) by u(r) , and multiply both sides of the second formula by v(r) . Then, add the two formulas together, by condition (F1) we have

    \begin{eqnarray*} &\ &-u''(r)u(r)-\frac{N-1}{r}u'(r)u(r)-v''(r)v(r)-\frac{N-1}{r}v'(r)v(r)\\ & = &\lambda (f(r, \; u(r), \; v(r), \; |u'(r)|)u(r)+g(r, \; u(r), \; v(r), \; |v'(r)|)v(r))\\ &\le& au^2(r)+bv^2(r)+c{u'}^2(r)+d{v'}^2(r)+e, \; \; r\in I. \end{eqnarray*}

    Multiply both sides of the above formula by r^{N-1} , we have

    \begin{eqnarray*} &\ &-(r^{N-1}u'(r))'u(r)-(r^{N-1}v'(r))'v(r)\\ &\le& r^{N-1}(au^2(r)+bv^2(r)+c{u'}^2(r)+d{v'}^2(r)+e)\\ &\le& {r_2}^{N-1}(au^2(r)+bv^2(r)+c{u'}^2(r)+d{v'}^2(r)+e), \; \; r\in I. \end{eqnarray*}

    By integrating on I , by Lemma 2.1 we have

    \begin{eqnarray*} {r_1}^{N-1}(\|u'\|_2^2+\|v'\|_2^2)& = & {r_1}^{N-1}\bigg(\int_{r_1}^{r_2}{u'}^2(r)dr+\int_{r_1}^{r_2}{v'}^2(r)dr\bigg)\\ &\le& \int_{r_1}^{r_2}r^{N-1}{u'}^2(r)dr+\int_{r_1}^{r_2}r^{N-1}{v'}^2(r)dr\\ &\le& {r_2}^{N-1}(a\|u\|_2^2+b\|v\|_2^2+c\|u'\|_2^2+d\|v'\|_2^2+e(r_2-r_1))\\ &\le& {r_2}^{N-1}\bigg( \frac{(r_1-r_2)^2}{2}(a+b)+c+d\bigg)(\|u'\|_2^2+\|v'\|_2^2)+e{r_2}^{N-1}(r_2-r_1), \end{eqnarray*}

    namely,

    \bigg(1-\frac{{r_2}^{N-1}}{{r_1}^{N-1}}\Big(\frac{(r_1-r_2)^2}{2}(a+b)+c+d\Big)\bigg)(\|u'\|_2^2+\|v'\|_2^2)\le \frac{{r_2}^{N-1}}{{r_1}^{N-1}}e(r_2-r_1).

    Hence,

    \|u'\|_2^2+\|v'\|_2^2\le \frac{\frac{{r_2}^{N-1}}{{r_1}^{N-1}}e(r_2-r_1)} {1-\frac{{r_2}^{N-1}}{{r_1}^{N-1}}\bigg(\frac{(r_1-r_2)^2}{2}(a+b)+c+d \bigg)}\triangleq C.

    Then,

    \|u'\|_2\le \sqrt C, \; \|v'\|_2\le \sqrt C.

    For all r\in I , we have

    |u(r)| = \bigg|\int_{r_1}^{r}u'(s)ds\bigg|\le \int_{r_1}^{r_2}|u'(s)|ds\le \sqrt{r_2-r_1}\|u'\|_2\le \sqrt {C(r_2-r_1)},

    namely,

    \|u\|_C\le \sqrt {C(r_2-r_1)}.

    Similarly, it can be obtained

    \|v\|_C\le \sqrt {C(r_2-r_1)}.

    Therefore,

    \|(u, \; v)\|_C = \max\{\|u\|_C, \; \|v\|_C\}\le \sqrt {C(r_2-r_1)}.

    By condition (F0), we have

    |\lambda f(r, \; u, \; v, \; \xi)|\le |f(r, \; u, \; v, \; \xi)|\le G_{M}(|\xi|), \; \; r\in I,
    |\lambda g(r, \; u, \; v, \; \eta)|\le |g(r, \; u, \; v, \; \eta)|\le G_{M}(|\eta|), \; \; r\in I.

    Hence, \lambda f and \lambda g satisfy condition (F0). By Lemma 2.3, there exist constants M_1 = M_1(M) > 0 and M_2 = M_2(M) > 0 , such that

    \|(u', \; v')\|_C\le \max\{M_1, \; M_2\}: = M_0.

    Therefore,

    \|(u, \; v)\|_{C^1} = \max\{\|(u, \; v)\|_C, \; \|(u', \; v')\|_C\}\le \max\{\sqrt {C(r_2-r_1)}, \; M_0\}.

    Hence, the solution set of the Eq (3.1) is bounded in C^1(I)\times C^1(I) . By the Leray-Schauder fixed point, we know that A has fixed point (u, \; v)\in C^1(I)\times C^1(I) . By the definition of A , (u, \; v) is a solution of BVP (1.2), namely, (u(|x|), \; v(|x|)) is a radial solution of BVP (1.1).

    The proof of Theorem 1.1 is completed.

    Proof of Theorem 1.2. First, we prove that (F2)\Rightarrow (F1) . For all (r, \; u, \; v)\in I\times \mathbb{R}\times \mathbb{R}, \; \xi, \; \eta \in \mathbb{R}^+ , we take u_2 = u, \; v_2 = v, \; \xi_2 = \xi, \; \eta_2 = \eta, \; u_1 = v_1 = \xi_1 = \eta_1 = 0 in (F2). Set

    C_0 = \max\limits_{r\in I}\{|f(r, \; 0, \; 0, \; 0)|, \; |g(r, \; 0, \; 0, \; 0)|\}+1.

    By condition (F2), we have

    \begin{align*} \quad& f(r, \; u, \; v, \; \xi)u+g(r, \; u, \; v, \; \eta)v\\ = &\; (f(r, \; u, \; v, \; \xi)-f(r, \; 0, \; 0, \; 0))u+(g(r, \; u, \; v, \; \eta)-g(r, \; 0, \; 0, \; 0))v\\ & +f(r, \; 0, \; 0, \; 0)u+g(r, \; 0, \; 0, \; 0)v\\ \le&\; au^2+bv^2+c\xi^2+d\eta^2+|f(r, \; 0, \; 0, \; 0)u|+|g(r, \; 0, \; 0, \; 0)v|\\ \le&\; au^2+bv^2+c\xi^2+d\eta^2+C_0|u|+C_0|v|\\ = &\; au^2+bv^2+c\xi^2+d\eta^2+2\cdot \frac{\sqrt{\frac{2}{(r_1-r_2)^2}-(a+b)-\frac{2}{(r_1-r_2)^2}(c+d)}}{2}|u|\\ &\cdot \frac{C_0}{\sqrt{\frac{2}{(r_1\!-\!r_2)^2}\!-\!(a\!+\!b)\!-\!\frac{2}{(r_1\!-\!r_2)^2}(c\!+\!d)}}+2\cdot \frac{\sqrt{\frac{2}{(r_1\!-\!r_2)^2}\!-\!(a\!+\!b)\!-\!\frac{2}{(r_1\!-\!r_2)^2}(c\!+\!d)}}{2}|v|\\ &\cdot \frac{C_0}{\sqrt{\frac{2}{(r_1-r_2)^2}-(a+b)-\frac{2}{(r_1-r_2)^2}(c+d)}}\\ \le&\; au^2+bv^2+c\xi^2+d\eta^2+\frac{\frac{2}{(r_1-r_2)^2}-(a+b)-\frac{2}{(r_1-r_2)^2}(c+d)}{4}u^2 \end{align*}
    \begin{align*} & +\frac{\frac{2}{(r_1-r_2)^2}-(a+b)-\frac{2}{(r_1-r_2)^2}(c+d)}{4}v^2+\frac{2{C_0}^2}{\frac{2}{(r_1-r_2)^2}-(a+b)-\frac{2}{(r_1-r_2)^2}(c+d)}\\ = &\; \bigg(a\!+\!\frac{\frac{2}{(r_1\!-\!r_2)^2}\!-\!(a\!+\!b)\!-\!\frac{2}{(r_1\!-\!r_2)^2}(c\!+\!d)}{4}\bigg)u^2\!+\! \bigg(b\!+\!\frac{\frac{2}{(r_1\!-\!r_2)^2}\!-\!(a\!+\!b)\!-\!\frac{2}{(r_1\!-\!r_2)^2}(c\!+\!d)}{4}\bigg)v^2\\ & +c\xi^2+d\eta^2+\frac{2{C_0}^2}{\frac{2}{(r_1-r_2)^2}-(a+b)-\frac{2}{(r_1-r_2)^2}(c+d)}. \end{align*}

    Let

    a_1 = a+\frac{\frac{2}{(r_1-r_2)^2}-(a+b)-\frac{2}{(r_1-r_2)^2}(c+d)}{4}\ge 0,
    b_1 = b+\frac{\frac{2}{(r_1-r_2)^2}-(a+b)-\frac{2}{(r_1-r_2)^2}(c+d)}{4}\ge 0,
    c_1 = c\ge 0\; , \quad d_1 = d\ge 0,
    e_1 = \frac{2{C_0}^2}{\frac{2}{(r_1-r_2)^2}-(a+b)-\frac{2}{(r_1-r_2)^2}(c+d)}\ge 0,

    we have

    f(r, \; u, \; v, \; \xi)u+g(r, \; u, \; v, \; \eta)v\le a_1u^2+b_1v^2+c_1\xi^2+d_1\eta^2+e_1,

    where (r, \; u, \; v)\in I\times \mathbb{R}\times \mathbb{R}, \; \xi, \; \eta \in \mathbb{R}^+ and \frac{(r_1-r_2)^2}{2}(a_1+b_1)+c_1+d_1 = \frac{\frac{(r_1-r_2)^2}{2}(a+b)+c+d+1}{2} < 1 .

    Hence, f and g satisfy condition (F1), by Theorem 1.1, BVP (1.1) has at least one radial solution.

    Next, we prove the uniqueness. Set (u_1, \; v_1), \; (u_2, \; v_2)\in C^2(I)\times C^2(I) are the solution of BVP (1.1), then

    \begin{align} \left \{ \begin{array}{ll} -u_1''(r)-\frac{N-1}{r}u_1'(r) = f(r, \; u_1(r), \; v_1(r), \; |u_1'(r)|), \; \; r\in I, \\[10pt] -v_1''(r)-\frac{N-1}{r}v_1'(r) = g(r, \; u_1(r), \; v_1(r), \; |v_1'(r)|), \; \; r\in I, \\[10pt] u_1(r_1) = u_1(r_2) = 0, \; v_1(r_1) = v_1(r_2) = 0. \end{array} \right. \end{align} (3.3)
    \begin{align} \left \{ \begin{array}{ll} -u_2''(r)-\frac{N-1}{r}u_2'(r) = f(r, \; u_2(r), \; v_2(r), \; |u_2'(r)|), \; \; r\in I, \\[10pt] -v_2''(r)-\frac{N-1}{r}v_2'(r) = g(r, \; u_2(r), \; v_2(r), \; |v_2'(r)|), \; \; r\in I, \\[10pt] u_2(r_1) = u_2(r_2) = 0, \; v_2(r_1) = v_2(r_2) = 0. \end{array} \right. \end{align} (3.4)

    Subtract the first formula of Eq (3.4) and the first formula of Eq (3.3), we get

    \begin{array}{c} -(u_2''(r)-u_1''(r))-\frac{N-1}{r}(u_2'(r)-u_1'(r)) \\ = f(r, \; u_2(r), \; v_2(r), \; |u_2'(r)|)-f(r, \; u_1(r), \; v_1(r), \; |u_1'(r)|), \; \; r\in I. \end{array} (3.5)

    Similarly, it can be obtained

    \begin{array}{c} -(v_2''(r)-v_1''(r))-\frac{N-1}{r}(v_2'(r)-v_1'(r)) \\ = g(r, \; u_2(r), \; v_2(r), \; |v_2'(r)|)-g(r, \; u_1(r), \; v_1(r), \; |v_1'(r)|), \; \; r\in I. \end{array} (3.6)

    Multiply both sides of Eq (3.5) by u_2(r)-u_1(r), and multiply both sides of Eq (3.6) by v_2(r)-v_1(r). Then, add the two formulas together, by condition (F2), for all r\in I, we have

    \begin{align*} \quad &-(u_2''(r)-u_1''(r))(u_2(r)-u_1(r))-\frac{N-1}{r}(u_2'(r)-u_1'(r))(u_2(r)-u_1(r))\\ &-(v_2''(r)-v_1''(r))(v_2(r)-v_1(r))-\frac{N-1}{r}(v_2'(r)-v_1'(r))(v_2(r)-v_1(r))\\ = &\; (f(r, \; u_2(r), \; v_2(r), \; |u_2'(r)|)-f(r, \; u_1(r), \; v_1(r), \; |u_1'(r)|))(u_2(r)-u_1(r))\\ & +(g(r, \; u_2(r), \; v_2(r), \; |v_2'(r)|)-g(r, \; u_1(r), \; v_1(r), \; |v_1'(r)|))(v_2(r)-v_1(r))\\ \le&\; a(u_2(r)\!-\!u_1(r))^2\!+\!b(v_2(r)\!-\!v_1(r))^2\!+\!c(|u_2'(r)|\!-\!|u_1'(r)|)^2\!+\!d(|v_2'(r)|\!-\!|v_1'(r)|)^2. \end{align*}

    Multiply both sides of the above formula by r^{N-1}, we have

    \begin{eqnarray*} &\ &-\Big(r^{N-1}(u_2'(r)-u_1'(r))\Big)'(u_2(r)-u_1(r))-\Big(r^{N-1}(v_2'(r)-v_1'(r))\Big)'(v_2(r)-v_1(r))\\ &\le& r^{N-1}\Big(a(u_2(r)\!-\!u_1(r))^2\!+\!b(v_2(r)\!-\!v_1(r))^2\!+\!c(|u_2'(r)|\!-\!|u_1'(r)|)^2\!+\!d(|v_2'(r)|\!-\!|v_1'(r)|)^2\Big)\\ &\le& {r_2}^{N-1}\Big(a(u_2(r)\!-\!u_1(r))^2\!+\!b(v_2(r)\!-\!v_1(r))^2\!+\!c(|u_2'(r)|\!-\!|u_1'(r)|)^2\!+\!d(|v_2'(r)|\!-\!|v_1'(r)|)^2\Big). \end{eqnarray*}

    By integrating on I, by Lemma 2.1 we have

    \begin{eqnarray*} &\ &{r_1}^{N-1}(\|u_2'-u_1'\|_2^2+\|v_2'-v_1'\|_2^2)\\ & = & {r_1}^{N-1}\bigg(\int_{r_1}^{r_2}(u_2'(r)-u_1'(r))^2dr+\int_{r_1}^{r_2}(v_2'(r)-v_1'(r))^2dr\bigg)\\ &\le& \int_{r_1}^{r_2}r^{N-1}(u_2'(r)-u_1'(r))^2dr+\int_{r_1}^{r_2}r^{N-1}(v_2'(r)-v_1'(r))^2dr\\ &\le& {r_2}^{N-1}\Big(a\|u_2-u_1\|_2^2+b\|v_2-v_1\|_2^2+c\|u_2'-u_1'\|_2^2+d\|v_2'-v_1'\|_2^2\Big)\\ &\le& {r_2}^{N-1}\bigg( \frac{(r_1-r_2)^2}{2}(a+b)+c+d\bigg)(\|u_2'-u_1'\|_2^2+\|v_2'-v_1'\|_2^2), \end{eqnarray*}

    namely,

    0\le \bigg(1-\frac{{r_2}^{N-1}}{{r_1}^{N-1}}\Big(\frac{(r_1-r_2)^2}{2}(a+b)+c+d\Big)\bigg)(\|u_2'-u_1'\|_2^2+\|v_2'-v_1'\|_2^2)\le 0.

    Hence,

    \|u_2'-u_1'\|_2^2+\|v_2'-v_1'\|_2^2 = 0,

    namely u_2'-u_1' = 0, v_2'-v_1' = 0, then, u_2-u_1 = C_1, v_2-v_1 = C_2, where C_1, C_2 are constants. From the boundary conditions, C_1 = C_2 = 0, namely, u_2 = u_1, v_2 = v_1. Thus, BVP (1.1) has a unique radial solution.

    The proof of Theorem 1.2 is completed.

    Example 3.1. Consider the elliptic boundary value problem

    \begin{align} \left \{ \begin{array}{ll} -\triangle u = -u^3v^{2}+u-u|\nabla u|^{2}+\sin |x|, \; \; x\in \Omega, \\[10pt] -\triangle v = -v^{3}-u^{2}v+3v-2v|\nabla v|^{2}+1, \\[10pt] u|_{\partial \Omega} = 0, \; v|_{\partial \Omega} = 0. \end{array} \right. \end{align} (3.7)

    The corresponding nonlinear term of Eq (3.7) are

    f(r, \; u, \; v, \; \xi) = -u^3v^{2}+u-u\xi^{2}+\sin r, \quad g(r, \; u, \; v, \; \eta) = -v^{3}-u^{2}v+3v-2v\eta^{2}+1.

    It is easy to see that f and g are quadratic growth with respect to \xi and \eta respectively, satisfying condition (F0). We next verify that f and g satisfy condition (F1), take r_1 = \frac{1}{2}, r_2 = 1, a = 1+\varepsilon, b = 3+\varepsilon, c = d = 0, e = \frac{1}{2\varepsilon}. When \varepsilon < 2, we have \frac{(r_1-r_2)^2}{2}(a+b) < 1, f and g satisfy

    \begin{align*} \quad &f(r, \; u, \; v, \; \xi)u+g(r, \; u, \; v, \; \eta)v\\ = &\; -u^4v^{2}+u^2-u^2\xi^{2}+u\sin r-v^{4}-u^{2}v^2+3v^2-2v^2\eta^{2}+v\\ \le &\; u^2+3v^2+|u|\sin r+|v|\\ = &\; u^2+3v^2+2\cdot \sqrt{\varepsilon}|u|\cdot \frac{\sin r}{2\sqrt{\varepsilon}}+2\cdot \sqrt{\varepsilon}|v|\cdot \frac{1}{2\sqrt{\varepsilon}}\\ \le &\; u^2+3v^2+\varepsilon u^2+\frac{\sin^2 r}{4\varepsilon}+\varepsilon v^2+\frac{1}{4\varepsilon}\\ \le &\; (1+\varepsilon)u^2+(3+\varepsilon)v^2+\frac{1}{2\varepsilon}\\ = &\; au^2+bv^2+e. \end{align*}

    Thus, f(r, u, v, \xi) and g(r, u, v, \eta) satisfy condition (F1). By Theorem 1.1, BVP (3.7) has at least one radial solution.

    It is well known that elliptic equations arises in many different areas of applied mathematics and physics, for instance, incineration theory of gases, solid state physics, variational methods and optimal control. Due to the appearance of the gradient term in the nonlinearity, the equation system has no variational structure and the variational method cannot be applied to it directly. Therefore, we given existence and uniqueness results of radial solution in the case of f and g superlinear or sublinear, we replace the previous independent conditions with the correlation conditions of f and g. In this paper, we just consider the existence of solutions. However, the properties of the solution have not been fully discussed.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are most grateful to the editor Professor and anonymous referees for the careful reading of the manuscript and valuable suggestions that helped improve an earlier version of this article.

    This work was supported by National Natural Science Foundations of China (No.12061062, 11661071).

    All authors declare that they have no competing interests.



    [1] D. R. Dunninger, H. Y. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal., 42 (2000), 803–811. https://doi.org/10.1016/S0362-546X(99)00125-X doi: 10.1016/S0362-546X(99)00125-X
    [2] Y. H. Lee, A multiplicity result of positive radial solutions for a multiparameter elliptic system on an exterior domain, Nonlinear Anal., 45 (2001), 597–611. https://doi.org/10.1016/S0362-546X(99)00410-1 doi: 10.1016/S0362-546X(99)00410-1
    [3] D. D. Hai, Uniqueness of positive solutions for a class of semilinear elliptic systems, Nonlinear Anal., 52 (2003), 595–603. https://doi.org/10.1016/S0362-546X(02)00125-6 doi: 10.1016/S0362-546X(02)00125-6
    [4] D. G. de Figueiredo, I. Peral, J. D. Rossi, The critical hyperbola for a Hamiltonian elliptic system with weights, Ann. Mat. Pur. Appl., 187 (2008), 531–545. https://doi.org/10.1007/978-3-319-02856-9_42 doi: 10.1007/978-3-319-02856-9_42
    [5] D. G. de Figueiredo, J. M. do Ó, B. Ruf, Non-variational elliptic systems in dimension two: A priori bounds and existence of positive solutions, J. Fixed Point Theory Appl., 4 (2008), 77–96. https://doi.org/10.1007/978-3-319-02856-9_41 doi: 10.1007/978-3-319-02856-9_41
    [6] D. G. de Figueiredo, P. Ubilla, Superlinear systems of second-order ODE's, Nonlinear Anal., 68 (2008), 1765–1773. https://doi.org/10.1016/j.na.2007.01.001 doi: 10.1016/j.na.2007.01.001
    [7] R. Precup, Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems, J. Math. Anal. Appl., 352 (2009), 48–56. https://doi.org/10.1016/j.jmaa.2008.01.097 doi: 10.1016/j.jmaa.2008.01.097
    [8] G. A. Afrouzi, T. A. Roushan, Existence of positive radial solutions for some nonlinear elliptic systems, Bull. Math. Anal. Appl., 3 (2011), 146–154.
    [9] C. O. Alves, A. Moussaoui, Existence of solutions for a class of singular elliptic systems with convection term, Asymptot. Anal., 90 (2014), 237–248. https://doi.org/10.3233/ASY-141245 doi: 10.3233/ASY-141245
    [10] C. J. Batkam, Radial and nonradial solutions of a strongly indefinite elliptic system on \mathbb{R}^N, Afr. Mat., 26 (2015), 65–75. https://doi.org/10.1007/s13370-013-0190-2 doi: 10.1007/s13370-013-0190-2
    [11] D. D. Hai, R. C. Smith, Uniqueness for a class of singular semilinear elliptic systems, Funkcial. Ekvac., 59 (2016), 35–49. https://doi.org/10.1619/fesi.59.35 doi: 10.1619/fesi.59.35
    [12] R. Y. Ma, T. L. Chen, H. Y. Wang, Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions, J. Math. Anal. Appl., 443 (2016), 542–565. https://doi.org/10.1016/j.jmaa.2016.05.038 doi: 10.1016/j.jmaa.2016.05.038
    [13] R. Y. Ma, H. L. Gao, Y. Q. Lu, Radial positive solutions of nonlinear elliptic systems with Neumann boundary conditions, J. Math. Anal. Appl., 434 (2016), 1240–1252. https://doi.org/10.1016/j.jmaa.2015.09.065 doi: 10.1016/j.jmaa.2015.09.065
    [14] D. Motreanu, A. Moussaoui, Z. T. Zhang, Positive solutions for singular elliptic systems with convection term, J. Fix. Point Theory A., 19 (2017), 2165–2175. https://doi.org/10.1007/s11784-017-0407-3 doi: 10.1007/s11784-017-0407-3
    [15] F. Cianciaruso, G. Infante, P. Pietramala, Multiple positive radial solutions for Neumann elliptic systems with gradient dependence, Math. Method. Appl. Sci., 41 (2018), 6358–6367. https://doi.org/10.1002/mma.5143 doi: 10.1002/mma.5143
    [16] F. Cianciaruso, P. Pietramala, Semilinear elliptic systems with dependence on the gradient, Mediterr. J. Math., 15 (2018). https://doi.org/10.1007/s00009-018-1203-z doi: 10.1007/s00009-018-1203-z
    [17] D. D. Hai, R. Shivaji, Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball, J. Differ. Equations, 266 (2019), 2232–2243. https://doi.org/10.1016/j.jde.2018.08.027 doi: 10.1016/j.jde.2018.08.027
    [18] B. Son, P. Y. Wang, Positive radial solutions to classes of nonlinear elliptic systems on the exterior of a ball, J. Math. Anal. Appl., 488 (2020). https://doi.org/10.1016/j.jmaa.2020.124069 doi: 10.1016/j.jmaa.2020.124069
    [19] G. Infante, Eigenvalues of elliptic functional differential systems via a Birkhoff-Kellogg type theorem, Mathematics, 9 (2021), 4. https://doi.org/10.3390/math9010004 doi: 10.3390/math9010004
    [20] H. Y. Zhang, J. F. Xu, D. O'Regan, Nontrivial radial solutions for a system of second order elliptic equations, J. Appl. Anal. Comput., 12 (2022), 2208–2219. https://doi.org/10.11948/20210232 doi: 10.11948/20210232
    [21] M. Khuddush, K. R. Prasad, Existence of infinitely many positive radial solutions for an iterative system of nonlinear elliptic equations on an exterior domain, Afr. Mat., 33 (2022). https://doi.org/10.1007/s13370-022-01027-3 doi: 10.1007/s13370-022-01027-3
    [22] K. R. Prasad, M. Khuddush, B. Bharathi, Denumerably many positive radial solutions for the iterative system of elliptic equations in an annulus, Palest. J. Math., 11 (2022), 549–559.
    [23] L. M. Guo, J. F. Xu, D. O'Regan, Positive radial solutions for a boundary value problem associated to a system of elliptic equations with semipositone nonlinearities, AIMS Math., 8 (2023), 1072–1089. https://doi.org/10.3934/math.2023053 doi: 10.3934/math.2023053
    [24] Y. X. Li, Positive radial solutions for elliptic equations with nonlinear gradient terms in an annulus, Complex Var. Elliptic, 63 (2018), 171–187. https://doi.org/10.1080/17476933.2017.1292261 doi: 10.1080/17476933.2017.1292261
    [25] Y. X. Li, W. F. Ma, Existence of classical solutions for nonlinear elliptic equations with gradient terms, Entropy, 24 (2022). https://doi.org/10.3390/e24121829 doi: 10.3390/e24121829
    [26] K. Deimling, Nonlinear functional analysis, New York: Springer-Verlag, 1985.
    [27] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, New York: Academic Press, 1988.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1247) PDF downloads(78) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog