Research article

Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions

  • Received: 13 February 2021 Accepted: 26 August 2021 Published: 14 September 2021
  • MSC : 26A33, 34A08, 34B15

  • This paper proposes the existence and uniqueness of a solution for a coupled system that has fractional differential equations through Erdélyi-Kober and Riemann-Liouville fractional integral boundary conditions. The existence of the solution for the coupled system by adopting the Leray-Schauder alternative. The uniqueness of solution for the problem can be found using Banach fixed point theorem. In order to verify the proposed criterion, some numerical examples are also discussed.

    Citation: Dumitru Baleanu, S. Hemalatha, P. Duraisamy, P. Pandiyan, Subramanian Muthaiah. Existence results for coupled differential equations of non-integer order with Riemann-Liouville, Erdélyi-Kober integral conditions[J]. AIMS Mathematics, 2021, 6(12): 13004-13023. doi: 10.3934/math.2021752

    Related Papers:

  • This paper proposes the existence and uniqueness of a solution for a coupled system that has fractional differential equations through Erdélyi-Kober and Riemann-Liouville fractional integral boundary conditions. The existence of the solution for the coupled system by adopting the Leray-Schauder alternative. The uniqueness of solution for the problem can be found using Banach fixed point theorem. In order to verify the proposed criterion, some numerical examples are also discussed.



    加载中


    [1] B. Ahmad, A. Alsaedi, B. S. Alghamdi, Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real, 9 (2008), 1727–1740. doi: 10.1016/j.nonrwa.2007.05.005
    [2] B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton. Fract., 83 (2016), 234–241. doi: 10.1016/j.chaos.2015.12.014
    [3] M. Ahmad, A. Zada, J. Alzabut, Hyers–Ulam stability of a coupled system of fractional differential equations of Hilfer–Hadamard type, Demonstratio Mathematica, 52 (2019), 283–295. doi: 10.1515/dema-2019-0024
    [4] D. Baleanu, J. Alzabut, J. M. Jonnalagadda, Y. Adjabi, M. M. Matar, A coupled system of generalized Sturm–Liouville problems and Langevin fractional differential equations in the framework of nonlocal and nonsingular derivatives, Adv. Differ. Equ., 2020 (2020), 1–30. doi: 10.1186/s13662-019-2438-0
    [5] A. Berhail, N. Tabouche, M. M. Matar, M. Mohammed, J. Alzabut, Boundary value problem defined by system of generalized Sturm–Liouville and Langevin Hadamard fractional differential equations, Math. Method. Appl. Sci., 2020, https://doi.org/10.1002/mma.6507.
    [6] A. Boutiara, S. Etemad, J. Alzabut, A. Hussain, M. Subramanian, S. Rezapour, On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria, Adv. Differ. Equ., 2021 (2021), 1–23. doi: 10.1186/s13662-020-03162-2
    [7] P. Duraisamy, T. N. Gopal, M. Subramanian, Analysis of fractional integro-differential equations with nonlocal Erdelyi-Kober type integral boundary conditions, Fract. Calc. Appl. Anal., 23 (2020), 1401–1415. doi: 10.1515/fca-2020-0069
    [8] Z. M. Ge, W. R. Jhuang, Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos Soliton. Fract., 33 (2007), 270–289. doi: 10.1016/j.chaos.2005.12.040
    [9] A. Granas, J. Dugundji, Fixed point theory, B. Am. Math. Soc., 41 (2004), 267–271.
    [10] R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000.
    [11] S. Kalla, L. Shyam, V. S. Kiryakova, H. An, Function generalized fractional calculus based upon compositions of Erdélyi-Kober operators in Lp, Math. Japonica, 35 (1990), 1151–1171.
    [12] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 2006.
    [13] H. Kober, On fractional integrals and derivatives, Q. J. Math., 1 (1940), 193–211.
    [14] T. Jin, H. Ding, H. Xia, J. Bao, Reliability index and Asian barrier option pricing formulas of the uncertain fractional first-hitting time model with Caputo type, Chaos Soliton. Fract., 142 (2021), 110409. doi: 10.1016/j.chaos.2020.110409
    [15] T. Jin, X. Yang, Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market, Math. Comput. Simulat., 190 (2021), 203–221. doi: 10.1016/j.matcom.2021.05.018
    [16] T. Jin, X. Yang, H. Xia, H. Ding, Reliability index and option pricing formulas of the first-hitting time model based on the uncertain fractional-order differential equation with Caputo type, Fractals, 29 (2021), 2150012. doi: 10.1142/S0218348X21500122
    [17] R. L. Magin, Fractional calculus in bioengineering, 2 Eds., Begell House Redding, 2006.
    [18] M. Manigandan, M. Subramanian, P. Duraisamy, T. N. Gopal, On Caputo-Hadamard type fractional differential equations with nonlocal discrete boundary conditions, Discontinuity, Nonlinearity, and Complexity, 10 (2021), 185–194. doi: 10.5890/DNC.2021.06.002
    [19] M. M. Matar, J. Alzabut, J. M. Jonnalagadda, A coupled system of nonlinear Caputo–Hadamard Langevin equations associated with nonperiodic boundary conditions, Math. Method. Appl. Sci., 44 (2021), 2650–2670. doi: 10.1002/mma.6711
    [20] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Physics Reports, 339 (2000), 1–77. doi: 10.1016/S0370-1573(00)00070-3
    [21] S. Muthaiah, D. Baleanu, N. G. Thangaraj, Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations, AIMS Mathematics, 6 (2021), 168–194. doi: 10.3934/math.2021012
    [22] S. Muthaiah, D. Baleanu, Existence of solutions for nonlinear fractional differential equations and inclusions depending on lower-order fractional derivatives, Axioms, 9 (2020), 1–17. doi: 10.30821/axiom.v9i1.7235
    [23] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
    [24] T. Qi, Y. Liu, Y. Cui, Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions, J. Funct. Space., 2017 (2017), 6703860.
    [25] M. Subramanian, A. Zada, Existence and uniqueness of solutions for coupled systems of Liouville-Caputo type fractional integrodifferential equations with Erdélyi-Kober integral conditions, Int. J. Nonlin. Sci. Num., 22 (2021), 543–557. doi: 10.1515/ijnsns-2019-0299
    [26] M. Subramanian, T. N. Gopal, Analysis of boundary value problem with multi-point conditions involving Caputo-Hadamard fractional derivative, Proyecciones, 39 (2020), 1555–1575. doi: 10.22199/issn.0717-6279-2020-06-0093
    [27] M. Subramanian, D. Baleanu, Stability and existence analysis to a coupled system of Caputo type fractional differential equations with Erdelyi-kober integral boundary conditions, Appl. Math. Inf. Sci., 14 (2020), 415–424. doi: 10.18576/amis/140307
    [28] M. Subramanian, A. R. V. Kumar, T. N. Gopal, Analysis of fractional boundary value problem with non local flux multi-point conditions on a caputo fractional differential equation, Stud. Univ. Babes-Bolyai. Math., 64 (2019), 511–527. doi: 10.24193/subbmath.2019.4.06
    [29] M. Subramanian, J. Alzabut, D. Baleanu, M. E. Samei, A. Zada, Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions, Adv. Differ. Equ., 2021 (2021), 1–46. doi: 10.1186/s13662-020-03162-2
    [30] J. Tariboon, S. K. Ntouyas, W. Sudsutad, Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions, J. Nonlinear Sci. Appl., 9 (2016), 295–308. doi: 10.22436/jnsa.009.01.28
    [31] N. Thongsalee, S. Laoprasittichok, S. K. Ntouyas, J. Tariboon, System of fractional differential equations with Erdélyi-Kober fractional integral conditions, Open Math., 13 (2015), 847–859.
    [32] W. Zhang, W. Liu, T. Xue, Existence and uniqueness results for the coupled systems of implicit fractional differential equations with periodic boundary conditions, Adv. Differ. Equ., 2018 (2018), 1–28. doi: 10.1186/s13662-017-1452-3
    [33] Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, 2 Eds., World Scientific, 2016.
    [34] Y. Zi, Y. Wang, Positive solutions for Caputo fractional differential system with coupled boundary conditions, Adv. Differ. Equ., 2019 (2019), 80. doi: 10.1186/s13662-019-2016-5
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1941) PDF downloads(81) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog