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1. Introduction

Fractional calculus is one of the most widely used mathematical analysis which deals with different
ways to represent the real and complex number powers of the differentiation or integration operator
and creating a calculus for the same operators in the generalized form. This calculus has numerous
applications in the fields of science and engineering viz viscoelasticity, engineering mechanics, control
systems, biological population models, etc. In specific, this branch of mathematics involves the
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methods and notion to solve the differential equations concern with a fractional derivative of unknown
function which is also called fractional differential equations (FDEs). Moreover, this fractional calculus
has been widely employed for modeling the engineering and physical processes which are possibly
represented in terms of FDEs. This type of fractional derivative model is utilized in order to provide
accurate modeling of those systems which needs to be accurate modeling of damping and also has the
capability of modeling the complex engineering problems [10-12,14—-17,23]. In recent years, a variety
of numerical and analytical modeling approaches with their applications to new problems have been
addressed in the research field of mechanics, electrodynamics of complex medium, and aerodynamics,
etc. The application of Erdélyi-Kober fractional integrals is discussed in detail with the examples
in [7,11,12,25,27,31]. Unlike integer derivatives, fractional derivatives access the system’s global
evolution rather than just its local characteristics; as a result, when dealing with certain phenomena,
they provide more accurate models of real-world behaviour than standard derivatives. In real life,
differential equations of fractional order are used to calculate the movement or flow of electricity, the
motion of an object back and forth like a pendulum, and to explain thermodynamic concepts, etc.
Additionally, in medical terms, they are used to visualize the progression of diseases. They represent
real-world behaviour more accurately than standard derivatives. The coupled system consists of a
couple of differential equations with pair of dependent variables and a single independent variable.
The coupled system of FDEs becomes a more popular research field due to its vast applications
in real-time problems namely anomalous diffusion, ecological models, chaotic systems, and disease
models [1,2,8,20,24,26]. Boundary value problems (BVPs) applied to a coupled system with non-
linear differential equations attracting researchers because of its applications in plasma physics and
heat conduction; see [3-6, 18, 19,21, 22, 28, 29, 32], and the references cited therein. The nonlinear
coupled system of Riemann-Liouville FDEs

reDIx(t) = f(t, x(1), (1)),
reDPY(1) = g(t, x(1), y(1)),

K0) =0, X(T)= ) awIy@m), ni€O,7), (L.1)
i=1

y0) =0, YT)=) Bul"x(®), 6 €(,T),
i=1

forO <t <Tand 1 < ¢q,p < 2, was investigated in [30], where g, D?, g, D" denote the Riemann-
Liouville fractional derivatives (RLFDs) of order ¢, p, f, g : [0,T] X R X R — R are given continuous
functions, and «;, 5; € R, i = 1,2,--- ,n are positive real constants. Fixed-point theorems were also
employed to prove the main results. The Caputo type FDEs nonlinear coupled system

D%u(t) + A fi(t, u(@), v(1)) = 0,
D2(1) + . fo(t, u(1), V(1)) = 0,
1
WO =u’0)=---=u"10)=0, u(l)=p f a(s)v(s)dA:(s), (1.2)
0
1
VO =v'(0)=---=v"10)=0, v(l)= ,uzf b(s)u(s)dAs(s),
0

forO<t<l,n—-1<a <nm-1< a < m,and n,m > 2, were examined in [34], where

. . . . . 1
A; > 0 is a parameter, O is the standard Caputo derivative; y; > 0 is a constant, fo a(s)v(s)dA(s),
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fol b(s)u(s)dA,(s) denote the Riemann-Stieltjes integrals. Leray-Schauder’s alternative and the
contraction mapping principle proved the existence and uniqueness of solutions.

In this study, a coupled system with non-linear FDEs is considered and which is represented as in
(1.3).

{ “DSu(t) = f(T, (1), DUw(1)), 7€ [0,11: H,1 <¢<2,0<p0; <1, (13)

‘Dv(1) = g(t,u(1)," D'u(t)), 7€ [0,1] : H,1<0<2,0<¢g <1,
Equation (1.3) is subjected to the Erdélyi-Kober, Riemann-Liouville integral boundary conditions are

given in Eq (1.4).

{ u(0) = i1, I u(w), u(1) = 1, 78 u(@),0 < w,&é < 1, (1.4)

v(0) = 1TV, v(1) = 1. TZ2v(), 0 < L, < 1,

where ‘9 represents the Caputo derivatives of order j,{j = ¢,0,01,61}, J” and J4 are the Riemann-
Liouville integrals of order p,g > 0 and 1 f,";e"(i = 1,2) is the Erdélyi-Kober integrals of order o; >
0,6, > 0,6 € R(i = 1,2), f,g : HxR xR — R are continuous functions and y;, 7;(i = 1,2) are
real constants. The structure of this proposed work is as follows: Section 2 deals with some facts and
definitions related to this study. Section 3 gives a solution for the system described in Eq (2) and (3).
The examples of the proposed problem are drawn to validate the applications in Section 4. Finally, the
discussion is presented.

2. Preliminaries

This section recollects the definitions and some basics facts related to the proposed study are
presented [9, 12,23,33].

Definition 2.1. The Riemann-Liouville integral of order o > 0 for a function f (1) is defined as
1 T
~T769=——1fﬁ—ﬁﬁﬁﬂ®dQT>Q
I'(0) )

provided that the right hand side is point wise defined on [0, o).

Definition 2.2. The Caputo derivative of order o > 0 of a function f : [0, c0) — R is defined as
1 T
‘Df (1) = —— f(r — ) fM(@)do,n—1 <0 <n,
rm—mo

where n = [o] + 1 and [p] denotes the integral part of the real number.

Definition 2.3. The Erdélyi-Kober fractional integral of order ¢; > 0 with n > 0 and o1 € R of a
continuous function f : (0, 00) — R is defined by

Tos 777-_77(§1+QI) p gnei+n-1 o do
A S f(rn—ew-ﬂf() ’
0

provided the right hand side is point wise defined on R,.
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Remark 2.4. Forn = 1, the above operator is reduced to the Kober operator

T~ (s1+en) p Qe
I'(¢1) (r =6l
0

I f (1) = f(©)do,n,¢; >0,

that was introduced for the first time by Kober in [13]. For 0, = O, the kober operator is reduced to the
Riemann-Liouville integral with a power weight:

—<1 p 1
170 = [ g @do.si >0
fen) =0

Lemma 2.5. Given the functions v,p € C(H,R), the solution of the problem
‘Du(t) = v(in),teH,1<¢<2,
‘Dv(r) = pt),teH, 1 <0<2,
u0) = mI"u(w),ul) =1 78" u@), (2.1)
w0) = wIWO, (1) =TI v,

is equivalent to the fractional integral equations

wr) = Jv(1)+ %(614 - a1 I () + Ai(alT +a)| 1 I8 TvE) - T gV(l)], (2.2)
1 1

and

1
v(r) = Jp(n)+ i_zz(b4 —bsT)JMp(0) + A—2(b1T +bo)| 2 L) = T Qp(l)]- (2.3)

Here the non zero constants Ay and A\, are

Al = a1a4 + azar # 0, Ay = b1by + b3b, # 0, (24)
where
wp wp+l
= 1l-uyy=—-, = Uy —, 2.5
a MF(p+1) a ﬂlr(p+2) (2.5)
(e + 1) (e +(L)+ 1)
a = l-1j————————, a4 = 1 -1 , (2.6)
L(e +6,+1) T(e+(L)+6+1)
and
évq gq+1
by = 1—wp——— b, = _ 2.7
1 ﬂzr(q+1) 2 'u2F(q+2) (2.7)
T(e + 1 e+ (=)+1)
by = 1-p@*D o () 2.8)

T@+h+D) " Urlg+(L)+6+1)
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Proof. The general solution for the Eq (2.1) can be expressed as

u(™) =Jv()+cy+cit, (2.9)

v(r) =TI (r) +dy + d7, (2.10)

where ¢, ¢y, dy, d; are arbitrary constants.
Substituting the (1.4) in Egs (2.9) and (2.10), the following equations will be obtained.

1
=7 ( T V() + a)| T T8 ToWE) - ng(n]),
1 .
er= (m 112581 T (&) - T | - maﬂf“’v(w)),
1

1
do =+ (uzbm*qp({) +ba| T T m) - ff@p(l)]),

A

1
dy = n (b1 [Tzf 20 Tep(n) — T Qp(l)] — b3 T p(C )),

where ay, ay, as, aq, by, by, b3, by are given by (2.5)—(2.8). Substituting the values of ¢, ¢y, dy, d; in (2.9)
and (2.10) respectively, we get the solution for (2.1). O

3. Main results

Let us introduce the space U = {u : u € C(H,R) and “D'u € C(H,R)} with the norm defined by

llullay = llull + [1°D*" ull = sup |u(7)| + sup [*D* u(7)].

TeH TeH

Then (U,]|.lly) is a Banach space and also let us introduce the space V =
{v:veCHH,R)and “D%v € C(H,R)} with the norm defined by

VIl = VI + €DVl = sup [v(7)] + sup D' (7).

TeH TeH

Then (V, ||.ll4/) is a Banach space.
Clearly, the product space (U X V, ||.|lix) is a Banach space with the norm defined by

(et llggsry = Nl + VIl for (u,v) € U X V.
In view of Lemma 2.5, we define an operator ¥ : U XV — U XV by

F (u,v) () = (F1 (u,v) (1), F2 (u,v) (7)),
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where
Firu,v)(®) = J*f(0,v0), D*v(O)(7) + ﬁ—ll(cm —asT) I f(0,v(0),” D v(6))(w)
+Ail(a17 + a)| 11 L5 T [0, v(6), DU WO))(E) — T £, v(6),¢ @%(9))(1)],
and
Frlu,v)(0) = J80,u(®),” D' u(®)(7) + K_Zz(b4 = by1) T g0, u(0),” D u() ()

1
+A—2(b1T + bz)

T I 32 J8(0,u(6), D' u(9))(n) — Tg(60, u(6),* D° M(Q))(l)]-

Let us present the following assumptions that are used afterward here:
(H;) Assume that f, g: H XRXR — R are continuous functions and there exists constants K, K, > 0,
such that

OIf (rur,vi) = f(r,u2,v2)l < Ky (lug — up] +[vi = val),
@) |g (t,u1,vi) — g (t,uz, vo)| < Ky (Juy — ua| + [vi —val),
for each T € H and all u;,v; € R, i: 1 2.

(HZ)XI =A1+ 5 r(z S'l) s X2 = A + 5 F(Z Q ) WhereX = max{)(lv)(z}'
(H;) Assume that f,g: H X R Xx R — R are continuous functions and there exists real constants
l;,4; >0 =1,2)and [y, g > 0 such that for all u; € R(i = 1,2). We have

lo+ 1 lug| + L lual,

(l) |f (T’ u, uZ)l <
@) g(ryur,w)l < Ao+ Ay lug| + Az |u| .
For making a simplified expression, the following terms are introduced throughout this study:

1 N il (laal + las) ™7 N (laz| + lai])
I'c+1) [A] F'c+p+1) [A]

[IT ET(a+(£)+1) 1

Ternr(a+(2)+a+1) Te+D]

G =

3.1

1 las) P |
I'(5) Al Te+p+1) A

[ITI §§F(61+( )+1) 1

Fer DM@+ (2)so+1) TG

G>

(3.2)

1 |2l (b4 + 1bs]) — £™ (b + 1641

G, = + +
1 Fle+1D 1Al Flo+q+1) Al
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[ ] nel (62 + ((f—z) + l) 1 ’ 33)

T+ Dr(a+(2)+6+1) Te+D

Lo belGbs) ¢ b

I' (o) Al To+g+1) [Ay

[|| 7T (e +(%)+1) 1 ]
T b

? I'(o+ 1)F(62+(§)+92+ 1) ¥ F+1)

2

G,

(3.4)

A =KiGi,Pi=GIM, M =KGy, Py = Qle,A'l = Kzg’l ) P'l = Qle ,AIZ = Kzg,z ) Plz = Q;Mz,

B G» , G,
A = (Ql +—F(Z—gl))10+(g1+—F(2—Q1))/10’ (35)
B = (g’l + r@—j@))max{ﬂl,ﬂz}, (3.6)
C = (gl + r(z—_zgl))max{ll,lg}. (3.7)

Theorem 3.1. Suppose that (Hs) condition holds. Furthermore, it is assumed that max{8B,C} < 1.
Then, on ‘H, the BVP (1.3) and (1.4) have at least one solution.

Proof. The ¥ : U XV — U x V operator is shown to be completely continuous. It follows that the
¥ operator is continuous by the continuity of the f and g functions.

Let ® ¢ U x V be bounded. Then there exists positive constants N; and N, such that
f@v(r), D% (1)) < Nyand g (t,u (1), DS'u (1)) < N, for all (u,v) € ©.
Step 1: To show that ¥ is uniformly bounded.
For each 7 € H, we have

[F1 (u,v) (7)|
< sup {Jg 16, v(6),° D v(@)) () + %(Im — @ TDT | £(6, v(8), D v(H))] (w)
1 .
T+ @))| 11| T8 T¢ 1£(0.v(0).L D v(O)| (€) + T £(8, v(0). D*'v(6))| <1>]}
¢ M _ G+ L €,01 ¢ S
< Nl{ff (1) + 15l = atD T @) + m= ot + aa| Il 75" T5E) + T <1>]}
1 il (asl + las)) — w*P (laz| + lai])
N
1{r(g+ DT A Trp+D A

[IT | 591“(61 + (O_il) + 1) 1 ]}

"Ic+ DI (e + (=) +6,+1) T+
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< NGy,
and
|71 (u,v) (@)

< sup {5 “HFO,v(0), D) (1) + %(Iasl)ﬂ' PO, v(0)," D (O))] (w)

1
+M(|a1|)[ |T1| Igfgljg |f(9, V(Q),C .Z)QIV(H))l (f) + jg |f(9, V(Q),C Z)le(g))l (1)]}

1 (e o (al)
1{r(g>+ Al T+p+D) 1A
&T (61 + (%) + 1) 1
[|n| " ]}
T+ DT (g +(£)+6,+1) Te+D
< NG,

which implies that

1 ,
DT @ S s Of (= 6)" |73 (w,v) (©)]d6
NG ([
< Hiegy | w0
0
< ra—cy (N1G») .
Thus, we have
IF1 ey = NF1 @I+ 7D Fr (u, )]
G»
< Mo )
Similarly, we get
%2 (u, v) (7)]
< Su713 {J' ?1g(0, u(6), D' u()| (1) + %(IIM = b3t T |g(8, u(6),” D' u(6))| ()
1
+m(lb17 + bzl)[ 2| 72T |3(0, u(0), DS u(O)| () + T |8(6, u(6),° D u(6))| (1)]}
< NG,

and
|72 (u,v) (1)
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< sup {j o1 g(0, u(9), D u())] (1) + %(Ibgl)[f 0+ |o(6, u(0),° D°u(9))| ()
1 ‘ .
+m<|bl |)[ |T2| ]'(652,02\79 |g(9, u(G),‘ Dgl M(@))l (7]) + j“-’ |g(9’ M(@),L Z)S‘l u(g))| (1)]}
< NG,

which implies that

(D)@ £ a0 (M65).

As a result, the following expression is obtained,

12 (u, v)lly

12 (u, VI + I°D* F (u, V)|

Nz(g; + F(zg—_z@))

Therefore, the above equation follows the inequalities in which operator ¥ is uniformly bounded.
Step 2: To show that ¥ is equicontinuous. Let 7y, 7, € H with 7; < 7,. Then we have

[F1 (u,v) (12) — F1 (u,v) (T1)]

71

1 i ) .
m[ Of[(Tz - 0)° L _ (1) — 0)° 1]f(9,v(9), Dv(6)) df
' f (2= 0" £ (6,v(0)5 D" v(®)) de' + % (lasl vz = 1D

71

1
TP 0, v(0), D*vO)l (w) + Al (larllr2 = 71l)

| [T Z5.5% 1 £0, v(0),° D vO)] () + T 1£(6, v(6),c D*v(@))| (1)

e e LY PR i
Nl{F(g+1)[2|T2 T1|§+|T2 T1|]+ |A1|(|a3||7'2 71]) Tt i D)
1 ET(e+ = +1) 1
+m (la1]|r2 = T1|)[|TI| I'(c+ DI'(g + Cr% 10,+1) + T+ 1)]}, (3.8)
and
1 0 ,
CONF (1, v) (13) = DVF (u.v) (1) < =cy §1)[f[(Tl —0) S — (19 — 6)'] |¢1 (. ) (9)| 40

0
- f (12— 05" |F1 (u,v) (0)] de]

N\G»

< m[z |T2 - ‘I'lll_g1 + |‘l'é_gl - T}_gl | ] (39)
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Also, we obtain

|F2 (u,v) (12) — F2 (u,v) (T1)]

A [2|rz—n|9+|r9—r@|]+qumrz—m)L

- T+ 1) 2 A To+q+1)
L (e + 5+ 1) 1 310
v e =i | I eI LT e +F(Q+1)]}, (3.10)

and

¢ 1 c | NZQ,Z 1-01 1-o1 1-o;

FDAF (u, v) (1) =< D' Fa (u,v) (1) < m—g)zm—m + 0 - G
— Y1

This operator with Eqgs (3.8)—(3.11) tends to zero when 7, — 7. Subsequently, the ¥ operator is
equicontinuous and completely continuous according to Arzeld-Ascoli Theorem.

Step 3: To prove that the set @ = {(u,v) e U XV : (u,v) = uF (u,v),0 < u < 1} is bounded.

Let (#,v) € @w. Then (u,v) = uF (u,v). For any 7 € [0, 1], we have

u(t) = pFy (u,v) (1), v (1) = uF> (u,v) (7).

Then
lu(r)] < su75) {[f *1£(0,v(0)," D*'v()| (1) + %GCM —aztT) TP f(6,v(0), D°'v(6))] (w)
1 ,
e+ @b[[nl T3 1F0.v0. DO @ + T 1f0.v(0) D)) (1)]}
ol il (laal + lasl)) ™7
< (lo+11IIVI|+lz||ﬂVII){F(g+1)+ ™ Fe+psl)
el + |a1|)[ i (a+(5)+1) 1 ]}
A T+ DT (e +(£)+6,+1) Te+D
< (b + LM+ LDV G
< Gi(lo + max{ly, L} |Vlly),
and
W' (@) < sup {JH 1£(6,v(0). D v(O))] (7) + %(Iazl){f“” 1£(6,v(8),L D v(O))| ()

1 > o .
+m(|all)[ |TI|IS_';HIJ§ |f(9, w(0),C D)) (f) +J° |f(9, v(0), Dv(0))| (1)]}

(o + L lvll + £ IIC@Q‘VII){

L ilash o7
I'(s) Al T(c+p+1)

g@r(el + (O_il) + 1) 1 ]}

"Ic+ DI (e + (=) +6,+1) "Te+D

IA

(lail)
|A4l
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< Gy (o + max{l, LY |lly),

which implies that

S G (o + max {l;, b} |Vlly) |
DUl < py f( — 0y do
% (lo + max {ly, L} |Vlly) .
Hence we have
el < lull + [|°D* ull
G G
< (gl + m)lo + (Ql + F(Z——gl))maX{ll’lz} VIl -
We can have in a similar way,
()| < SUE {J 188, u(@),” D' u@))| (7) + %(lm — b3t |g(6, u(6),” D' u(9))| ()

+m(|b1‘r + bzl)[ 72| sz 92j9 |g(9, u(@)’c DSt u(6))| (77) + jg |g(9, u(@),c Dglu(Q))| (1)]}

G, (Ao + max{d;, 12} lully)

IA

and
V@) < G5 (Ao +max{d, 2} llully)

which implies that

] G.
D ()| < r(z—_zm(ﬂwmax{ﬂl,ﬂz}llullw)-
Hence we have
Wl < IV + D2
e (6 )
< + —— |1y + + ———— Jmax {1, A .
(6! R o o+ (61 + g e . ) e
Thus, we find that
, G, G G
+ ||v < ( —)/l +( —)l+( +—)maxl,l V
llell + IVl g, + ro A G+ T2 -/ G r2-o) {1, L} Vil
(Ql H2—&)))max{ﬂl,ﬂz}llullw
< A+ Bllully + Clvlly
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< A+ max{B,CYHu, vllyxy

which implies that

A

16y < s

The above equation proves that the set @ is bounded. Therefore, the ¥ operator consists of at least a
single fixed point according to the (see [33] Theorem 1.9). As a result, the boundary value problem is
represented in Eqs (1.3) and (1.4) also, consist of at least a single solution on H. |

Theorem 3.2. Suppose that (H,), (H,) and y < % hold, then the BVP (1.3) and (1.4) has a unique
solution on H.

Proof. Letus fix My = sup |f(1,0,0)| < coand M, = sup |g(7,0,0)| < co and we define

7€[0,1] 7€[0,1]
,6>max{ Pi+ oy P+r<2g1> }
> — .- g
3= (A + ) i (A + oo Ql))

Consider the set B, = {(u,v) € U XV : [|(u, V)llgyxy < P}
Now, to prove that FB; C B;. For (u,v) € B;, we have

1 ) ()
< sup {100 D)) (0) + K has = st 1£6.160) DO @)

1 ‘ |
#iagant + @] Il I3 T 116, (6) DU vOI ©) + T*11(6,v(6)" D v(®)) (1)]}

T* (1f(6,v(0), D°'v(0)) — f (6,0,0) + | (6,0,0)]) (1)

||1/<11||(|a4 — ast)T P (10, v(6)," D' v(0)) - £ (6,0,0)] + £ (6,0,0)]) (w)

1 .
"‘mﬂaﬂ' + d2|)[ 71 If,llg'jg (1£(6,v(), D°'v(0)) — f(6,0,0)] +|f(6,0,0)]) (&)

+J° (11 (0,v(0),° D*'v(0)) — f(6,0,0)| + |f(6,0,0)]) (1)]
+|,ul|(|a4|+|a3|) WP
I'(c+ 1D |Aq I'(c+p+1)
NCACT Y er(a+(FH)+1) ]}
A T+ DT (a+(£)+6,+1) Te+D

Ap + Py,

IA

IA

| K1 vl + Ml]{

IA

and
|71 (u,v) (@)
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IA

IA

IA

IA

sup {j 6, v(6), D)) (1) + M(Iazl)J P8, v(0),” D)) (w)

reH A4

1 > .
+m(|al |)[ |T1 | fgjlﬁljg |f(9, V(Q)’c Z)le(e))l (5) + jg |f(9, V(Q),‘ Z)Q'V(Q))| (1)]}

TH(f 6, v(0), D*v(B)) — £ (6,0,0)] + £ (6,0,0)) (1)

+%(|a3|)j§+p (£, v(0), D°*'v(0)) — £ (6,0,0)] + |f (6,0,0)]) (w)

1
+m(la1 I)[ [T T84T (£ (0, v(6),° D v(0) — f(6,0,0)] + | (6,0,0)]) (&)

+J° (11 (0, v(0)," D*'v(0)) — f (6,0,0) + |f (6,0,0)]) (1)]

il (lasl) P

1
[ ”V”“”Ml]{r(g) Al Tip+D
(Ias) ET(a+(2)+1) | ]}
+ T +
A T+ DT (g +(£)+0,+1) Te+D)
Asp + P,

which implies that

Hence,

1
I'(l-¢)

< Aop + P
T T2-¢1)

[“OF1 (u,v) ()

f (T =0 |71 (u,v) (O)|do
0

171 (Wl 11 (e, VI + 7D Fy (u, )|

Ay . P, )
Ay + +| P+
! r(z—g]))p (‘ T2-¢)

IA

IA
l\).l »

In this same way, we have

and

|2 (u, v) (7)]

IA

A+ P,

172 u,v)'(0)| < Ayp+ P,

which implies that

AIMS Mathematics

AP+ P,

“D"F (u,v) ()] < 1“(2—91).
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In consequence, we get

Hence, we get

1F e Wlly = N1Fs (W) + [FD2 F (u, v
< |A + A, )A+(P/+ it )
=\ Tre-o)’ T U T TR -0
< £
2

IF (u, Vllasxy = 1F1 @, Wl + 1152 , v)lly < p.

Hence, ¥ B; C B;.
Next to prove that # is a contraction mapping on B;.

For u;,v; €

B;,i = 1,2 and for each 7 € H, we have

1F1 (ur,vi) (7) = F1 (U, v2) (7)]

and

< sup {j *1f (0, v1(6),° D'vi(0)) — f(6,v2(6)," D' v2(6))] (7)

TeH

bl

| AII(Ia4 — asTT 1 £(0,v1(0),” D?'v1(0)) — f(6,v2(0), D' v2(9)| (w)

1
+— +
|A1|(|alT a|)

[ T LM T 1f(0,v1(0), D vi(8)) = f(6,v2(6)," D' va(O))] (£)
+J°1f(6,v1(0)," D'v1(0)) — (0, v2(6)," D' v2(6))| (1)]}

1 il (asl +las)) — w*P
I'c+1) A F'c+p+1)

gﬂ“(a + ((ril) + 1) 1 ]}

o ¢+ 1)1“(61 +(%)+91 + 1) ¥ Fc+1)

IA

(K3 vy = vl {

(las| + lai])
IA]

IA

Ay vy = V2||(v,

|71 (w1 v) (1) = Fi (ur,v1) (7))
< sup {JS‘” £(B.v1(0).5 D' v1(8)) — (8. v2(8). D' v (B))] (7)

TeH

+%<|a3|>:fw FO.010) Dv1(0)) = £(6,v:2(6) D v2(0))] (@)

1
+m(la1|)
[ [T LM T 1f (0, v1(0),° D' vi(6)) = f(6,v2(6),” D'va(0))] (£)

T IO 10 DFvi(0) - 10,200 D200 (D)
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13018

1 il (asl) w7
(K1||V1—V2||v){r(g)+ Al TerptD
(lall)[T ET (e +(5)+1) L] ]}
A T+ T (6 +(£)+6,+1) Te+D

Ay |lvi = vallq .

IA

IA

Thus, we obtain

I*OFy (uy, vi) (1) = D' F (U2, v2) (7))

1 / /
= T-e Of (=07 [T (a1, v1) 6) = F (s, v2) ©)]dE
1
S Fa—gy vl

Therefore,

lF71 (w1, vi) = F1 (u2, V2)||fu
IF1 (ur,vi) = Fr (o, vII + 1D F1 (g, vi) = D' Fy (g, vo)|

)||v1 ol

A
(Al + 2
I'2-g)
Xilvi = vallqy .

IA

In a similar way, we can find

|F2 (ur,vi) (7) = Fa (U2, v2) (7)]

< sup {J’ ?18(6, u1(0), D*'u1(0)) — 8(6, u2(6),” D' u2(0))] (7)

+%(Ib4 = b3t T 1g(8,ur(6). D11 (6)) — 8(6, u2(6). D' u(6))] ()

1
+m(|b17' + by)

[ T2l T22.T° 18(6, 11 (6),° D' 1 () ~ (6, u2(6),” D' ur(6))] (1)

+J°18(0,u1(0)," D*'u1(6)) — 8(6, u2(6),” D' ux(0))| (1)]}

Al ||z — M2||11 s

IA

and

|72 (ur,v1) (@) = Fa (2, v2) (7))

< sup {J 11800, 11(6), D11 (6)) — g(6, u2(8),° D' ur () (1)

+%<Ibsl)3’9“’ 1806, 11(6),° D11 (6)) = g(6, u2(6),° D' ur(6))| ()
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—<|b1 )
A,
| 172l 729 186, 11 (6).° D11 (8)) = (6, 12(6)." D™ ur(6))] ()
+J°18(6, ur(),° D uy () — 8(6, uz(6), D ur(6))| (1)]}
< A lluy — ol s

which implies that

A lluy = tiolly)

1
DT ) (D) = DTt ) (O] £ s

In consequence, we get

1F2 (uy,vi) — F2 (U2, V2)||(v
1F2 (u1, vi) = Fo (uz, VI + (1D Fa (uy, vi) = D' Fa (ua, v2)|

( % il
< + — ||l — Uy
T2 -0) “
< xolluy — usllq, -
Consequently, we obtain
IF @ Wllsy < xillvi = vally + xa2 llur — uslly
< max{x,x2} (lluy — uzllgy + vy = vally)
< xluy —uz) + (vi = v)llyyxey -

Thus, the # operator is referred to as a contraction operator (see [33] Theorem 1.4) and produced a
unique fixed point that generates a unique solution for the BVP of (1.3) and (1.4) on H. O

4. Examples

Example 4.1. Consider the following coupled system of non-integer order differential equations
subject to the Riemann-Liouville, Erdélyi-Kober integral conditions:

7
‘Dsu(r) = WCOST+ 306 08 V(1) + 35 ‘Div (1),

CZ)W(T) = \/7 + m sinu (1) + 52— 2(190+T) ‘Dsu(r),

w (@ = Fhu(t).u) =475 (),
v =47 (1) v () = 11v(Y).

Here, ¢ = 71/6,0 = 5/4,01 = 1/3,¢1 = 1/5, 11 = Lo = 411 = 4,1, = 1,p = 4/3,9 = 6/5,
o1 =3/2,6 =1/6,0, =5/4,0,=7/6,6, = 6/4,0, = 1/8,w =1/3,{ =1/2,6 =1/5,1 =1/7, and

also

(4.1)

c

¢ gy oL 49 _»
frv(), D () = WCOST-F 300 cosv(T) + 36040 D3v(r),
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e 39 25 €
c Sl — T o1 3
gru(r), " D'u(r)) = TS + 2406 sinu(T) + —2(190+T) Dsu(r).
Clearly,
1
c 1 < _ o 3
lf (r,v(D), " Dv(T))| < ¢t 300 || Il +
1 |
Cc S1 _ 3
2@ DU < 4ol + -

Thus, Iy = 1/6,1; = 49/300,l, = 35/180,4, = 1/4,4, = 39/240,4, = 25/380. Using the
given data, we find that a; = 0.8059,a, = 0.0277,a; = —1.9549,a, = 0.6521,A, = 0.4713 and
by = —0.5802,b, = 0.3591,b3 = 0.0876,b, = 0.8751,A, = —0.4763 and also G, = 2.3068,G, =
2.4740, Ql = 2.26606, §2 = 2.1105. Furthermore, we can find

, G.
B = (gl + F(Z—_Zm)]max {41, 42} = 0.7482,
C = (gl + I_‘(Zg——zgl)) max {l],lz} = 0.9650.

Thus, max{B,C} = 0.9650 < 1.
All of the hypotheses of the theorem 3.1 are satisfied. Therefore, there is a solution for the problem

(4.1) on ‘H.

Example 4.2. Consider the following coupled system of non-integer order differential equations
subject to the Riemann- Liouville, Erdélyi-Kober integral conditions:

‘Diu(r) = £v (1) + £ DI (1) + 7,
DIy (1) = Tu (1) + 35 2 Diu(r) +1,
Tuld),
v = T (L), v (1) = 2785 (1).

Here’ ¢ = S/S’Q = 6/5’Q1 = 4/5’g1 = 3/5’/11 = 2,:“2 = laTI = 1’T2 = 2’p = 3/27q = 1/2’
oy =5/2,¢ =1/3,0, =4/3,0, =5/4,6&6 =7/6,0, = 6/4,w = 1/4,{ = 1/5,6 = 1/6,n = 1/8 and
also Ky = 1/10, K, = 1/5. Clearly,

4.2
u(O):zj%u(i) u(l)y=1 42

N\m i

JB\LA O\\l

1
%5 (lur — ua| + vy = val),

IA

lf (zyuy,vi) = f (7, u2, V)

IA

lg (r,u1,v1) — g (7, up, v2)| g (luy = uz| + vy = val).

Using the given data, we find that a; = 0.8119,a, = 0.0188,a; = 0.4065,a;, = 0.9283, A; =
0.7608, b, = 0.4954, b, = 0.0673, b3 = 0.4605, b4 = 0.9563, 1, = 0.5047 and also G, = 1.3483G, =
1.7870, gl = 1.9601,@’2 = 2.0589,A; = 0.0539, A, = 0.0715, A'1 = 0.0560, A; = 0.0588. We can find

As
= |A; + ———— | =0.1345,
x (1 r(z—go)
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13021

’

(A’ 4, ) 0.1201
= + ———1|=0. .
r2 T T2-o)

Thus, y = max{y1, x>} =0.1345 < 1.
All of the hypotheses of the theorem 3.2 are satisfied. Therefore, there is a unique solution for the
problem (4.2) on H.

5. Discussion

This paper implemented the Riemann-Liouville, Erdélyi-Kober integral conditions with Leray-
Schauder and Banach fixed point theorems based solution for a Caputo type coupled differential
equations of non-integer order. The results are obtained through fixing the parameters of interest for
the proposed problem (1.3) and (1.4), such as (p, g, u1, 2, 71, T2) which makes the distinctive classes
of the problem. For example, by applying the value for p,q = 1 with a boundary condition in the
proposed solution, the following equation will be obtained for the problem (1.3) and (1.4):

uw(0) = gy [ u(®)d,u(l) = 115" u(&),0 < w,& < 1,
v(0) = s [ v(O)d6, (1) = 125 (), 0 < Ly < 1,

the result will be in the form of (1.3)—(1.4):

u(0) = 0,u(l) = 7, 75 u(é),0 < £ < 1,
v(0) = 0,v(1) = 1, 7%™v(;), 0 < < 1,

when applying the u; = u, = 0.
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