Research article

Existence of solutions for $q$-fractional differential equations with nonlocal Erdélyi-Kober $q$-fractional integral condition

  • Received: 22 June 2020 Accepted: 13 August 2020 Published: 24 August 2020
  • MSC : 39A13, 34B18, 34A08

  • In this paper, we obtain sufficient conditions for the existence, uniqueness of solutions for a fractional $q$-difference equation with nonlocal Erdélyi-Kober $q$-fractional integral condition. Our approach is based on some classical fixed point techniques, as Banach contraction principle and Schauder's fixed point theorem. Examples illustrating the obtained results are also presented.

    Citation: Min Jiang, Rengang Huang. Existence of solutions for $q$-fractional differential equations with nonlocal Erdélyi-Kober $q$-fractional integral condition[J]. AIMS Mathematics, 2020, 5(6): 6537-6551. doi: 10.3934/math.2020421

    Related Papers:

  • In this paper, we obtain sufficient conditions for the existence, uniqueness of solutions for a fractional $q$-difference equation with nonlocal Erdélyi-Kober $q$-fractional integral condition. Our approach is based on some classical fixed point techniques, as Banach contraction principle and Schauder's fixed point theorem. Examples illustrating the obtained results are also presented.


    加载中


    [1] D. O. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203.
    [2] V. Kac, P. Cheung, Quantum calculus, Springer, New York, 2001.
    [3] W. A. Al-Salam, Some fractional q-integral and q-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135-140. doi: 10.1017/S0013091500011469
    [4] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Philos. Soc., 66 (1969), 365-370. doi: 10.1017/S0305004100045060
    [5] P. Rajkovic, S. Marinkovic, M. Stankovic, On q-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359-373.
    [6] P. M. Rajkovic, S. D. Marinković, M. S. Stankovic, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1 (2007), 311-323. doi: 10.2298/AADM0701311R
    [7] M. H. Annaby, Z. S. I. Mansour, q-fractional calculus and equations, Springer, Berlin, 2012.
    [8] R. Ferreira, Positive solutions for a class of boundary value problems with fractional q-difference, Comput. Math. Appl., 61 (2011), 367-373. doi: 10.1016/j.camwa.2010.11.012
    [9] Y. Zhao, H. Chen, Q. Zhang, Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions, Adv. Differ. Equ., 2013 (2013), 1-15. doi: 10.1186/1687-1847-2013-1
    [10] B. Ahmad, J. J. Nieto, A. Alsaedi, et al. Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst., 351 (2014), 2890-2909. doi: 10.1016/j.jfranklin.2014.01.020
    [11] M. Jiang, S. M. Zhong, Existence of solutions for nonlinear fractional q-difference equations with Riemann-Liouville type q-derivatives, J. Appl. Math. Comput., 47 (2015), 429-459. doi: 10.1007/s12190-014-0784-3
    [12] B. Ahmad, S. K. Ntouyas, J. Tariboon, Impulsive fractional q-difference equations with separated boundary conditions, Appl. Math. Comput., 281 (2016), 199-213.
    [13] J. Ren, C. B. Zhai, A fractional q-difference equation with integral boundary conditions and comparison theorem, Int. J. Nonlinear Sci. Numer. Simul., 18 (2017), 575-583. doi: 10.1515/ijnsns-2017-0056
    [14] Y. Cui, S. Kang, H. Chen, Uniqueness of solutions for an integral boundary value problem with fractional q-differences, J. Appl. Anal. Comput., 8 (2018), 524-531.
    [15] S. Etemad, S. K. Ntouyas, B. Ahmad, Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders, Mathematics, 7 (2019), 1-15.
    [16] T. Zhang, Y. Tang, A difference method for solving the q-fractional differential equations, Appl. Math. Lett., 98 (2019), 292-299. doi: 10.1016/j.aml.2019.06.020
    [17] K. Ma, X. H. Li, S. R. Sun, Boundary value problems of fractional q-difference equations on the half-line, Bound. Value Probl., 2019 (2019), 1-16. doi: 10.1186/s13661-018-1115-7
    [18] G. T. Wang, Z. B. Bai, L. Zhang, Successive iterations for unique positive solution of a nonlinear fractional q-integral boundary value problem, J. Appl. Anal. Comput., 9 (2019), 1204-1215.
    [19] J. Ren, C. Zhai, Nonlocal q-fractional boundary value problem with Stieltjes integral conditions, Nonlinear Anal. Model. Control, 24, (2019), 582-602.
    [20] X. H. Li, Z. L. Han, X. Li, Boundary value problems of fractional q-difference Schröinger equations, Appl. Math. Lett., 46 (2015), 100-105. doi: 10.1016/j.aml.2015.02.013
    [21] T. Zhang, Q. Guo, The solution theory of the nonlinear q-fractional differential equations, Appl. Math. Lett., 104 (2020), 106282.
    [22] P. Lyu, S.Vong, An efficient numerical method for q-fractional differential equations, Appl. Math. Lett., 103 (2020), 106156.
    [23] N. Thongsalee, S. Ntouyas, J. Tariboon, Nonlinear Riemann-Liouville fractional differential equations with nonlocal Eedélyi-Kober fractional integral conditions, Fract. Calc. Appl. Anal., 19 (2016), 480-497.
    [24] L. Gaulue, Some results involving generalized Eedélyi-Kober fractional q-integral operators, Revista Tecno-Cientfica URU., 6 (2014), 77-89.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3298) PDF downloads(176) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog