Research article Special Issues

To investigate a class of multi-singular pointwise defined fractional $ q $–integro-differential equation with applications

  • Received: 06 November 2021 Revised: 03 February 2022 Accepted: 14 February 2022 Published: 17 February 2022
  • MSC : 34A08, 34B16, 39A13

  • In the research work, we discuss a multi-singular pointwise defined fractional $ q $–integro-differential equation under some boundary conditions via the Riemann-Liouville $ q $–integral and Caputo fractional $ q $–derivatives. New existence results rely on the $ \alpha $-admissible map and fixed point theorem for $ \alpha $-$ \mathtt{ψ} $-contraction map. At the end, we present an example with application and some algorithms to illustrate the primary effects.

    Citation: Mohammad Esmael Samei, Lotfollah Karimi, Mohammed K. A. Kaabar. To investigate a class of multi-singular pointwise defined fractional $ q $–integro-differential equation with applications[J]. AIMS Mathematics, 2022, 7(5): 7781-7816. doi: 10.3934/math.2022437

    Related Papers:

  • In the research work, we discuss a multi-singular pointwise defined fractional $ q $–integro-differential equation under some boundary conditions via the Riemann-Liouville $ q $–integral and Caputo fractional $ q $–derivatives. New existence results rely on the $ \alpha $-admissible map and fixed point theorem for $ \alpha $-$ \mathtt{ψ} $-contraction map. At the end, we present an example with application and some algorithms to illustrate the primary effects.



    加载中


    [1] T. Abdeljawad, J. Alzabut, D. Baleanu, A generalized $q$–fractional gronwall inequality and its applications to nonlinear delay $q$–fractional difference systems, J. Inequal. Appl., 2016 (2016), 240. https://doi.org/10.1186/s13660-016-1181-2 doi: 10.1186/s13660-016-1181-2
    [2] C. R. Adams, The general theory of a class of linear partial $q$–difference equations, T. Am. Math. Soc., 26 (1924), 283–312. https://doi.org/10.2307/1989141 doi: 10.2307/1989141
    [3] R. P. Agarwal, Certain fractional $q$–integrals and $q$–derivatives, Mathematical Proceedings of the Cambridge Philosophical Society, 66 (1965), 365–370. https://doi.org/10.1017/S0305004100045060
    [4] R. P. Agarwal, D. O'Regan, S. Staněk, Positive solutions for Dirichlet problem of singular nonlinear fractional differential equations, J. Math. Anal. Appl., 371 (2010), 57–68. https://doi.org/10.1016/j.jmaa.2010.04.034 doi: 10.1016/j.jmaa.2010.04.034
    [5] B. Ahmad, S. Etemad, M. Ettefagh, S. Rezapour, On the existence of solutions for fractional $q$–difference inclusions with $q$–antiperiodic boundary conditions, Bull. Math. Soc. Sci. Math. Roumanie, 59 (2016), 119–134.
    [6] B. Ahmad, S. K. Ntouyas, I. Purnaras, Existence results for nonlocal boundary value problems of nonlinear fractional $q$–difference equations, Adv. Differ. Equ., 2012 (2012), 140. https://doi.org/10.1186/1687-1847-2012-140 doi: 10.1186/1687-1847-2012-140
    [7] W. A. Al-Salam, $q$–analogues of Cauchy's formulas, Proc. Am. Math. Soc., 17 (1966), 616–621. https://doi.org/10.2307/2035378 doi: 10.2307/2035378
    [8] J. Alzabut, B. Mohammadaliee, M. E. Samei, Solutions of two fractional $q$–integro-differential equations under sum boundary value conditions on a time scale, Adv. Differ. Equ., 2020 (2020), 304. https://doi.org/10.1186/s13662-020-02766-y doi: 10.1186/s13662-020-02766-y
    [9] M. Annaby, Z. Mansour, $q$–fractional calculus and equations, Springer Heidelberg, Cambridge, 2012. https://doi.org/10.1007/978-3-642-30898-7
    [10] F. Atici, P. W. Eloe, Fractional $q$–calculus on a time scale, J. Nonlinear Math. Phys., 14 (2007), 341–352. https://doi.org/10.2991/jnmp.2007.14.3.4 doi: 10.2991/jnmp.2007.14.3.4
    [11] Z. Bai, H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [12] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhäuser, Boston, 2001.
    [13] A. Cabada, G. Wang, Positive solution of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl., 389 (2012), 403–411. https://doi.org/10.1016/j.jmaa.2011.11.065 doi: 10.1016/j.jmaa.2011.11.065
    [14] I. Dassios, T. Kerci, D. Baleanu, F. Milano, Fractional-order dynamical model for electricity markets, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7892
    [15] K. Deimling, Nonlinear functional analysis, Springer, Berlin, Germany, 1985.
    [16] D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625. https://doi.org/10.1006/jmaa.1996.0456 doi: 10.1006/jmaa.1996.0456
    [17] J. Alzabut, A. G. M. Selvam, R. Dhineshbabu, M. K. A. Kaabar, The existence, uniqueness, and stability analysis of the discrete fractional three-point boundary value problem for the elastic beam equation, Symmetry, 13 (2021), 789. https://doi.org/10.3390/sym13050789 doi: 10.3390/sym13050789
    [18] M. Abu-Shady, M. K. A. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng., 2021 (2021), 1–9. https://doi.org/10.1155/2021/9444803 doi: 10.1155/2021/9444803
    [19] S. J. Achar, C. Baishya, M. K. A. Kaabar, Dynamics of the worm transmission in wireless sensor network in the framework of fractional derivatives, Math. Methods Appl. Sci., 2021, 1–17. https://doi.org/10.1002/mma.8039
    [20] M. K. A. Kaabar, F. Martínez, J. F. Gómez-Aguilar, B. Ghanbari, M. Kaplan, H. Günerhan, New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second-order spatio-temporal dispersion via double Laplace transform method, Math. Methods Appl. Sci., 44 (2021), 11138–11156. https://doi.org/10.1002/mma.7476 doi: 10.1002/mma.7476
    [21] S. Rashid, M. K. A. Kaabar, A. Althobaiti, M. S. Alqurashi, Constructing analytical estimates of the fuzzy fractional-order Boussinesq model and their application in oceanography, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.01.003
    [22] A. M. A. El-Sayed, Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal., 33 (1998), 181–186. https://doi.org/10.1016/S0362-546X(97)00525-7 doi: 10.1016/S0362-546X(97)00525-7
    [23] R. Ferreira, Nontrivials solutions for fractional $q$–difference boundary value problems, Electron. J. Qual. Theo., 70 (2010), 1–10.
    [24] C. Goodrich, A. C. Peterson, Discrete fractional calculus, Switzerland: Springer International Publishing, 2015. https://doi.org/10.1007/978-3-319-25562-0
    [25] F. Jackson, $q$–difference equations, Am. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183
    [26] H. Jafari, V. Daftardar-Gejji, Positive solutions of nonlinear fractional boundary value problems using adomian decomposition method, Appl. Math. Comput., 180 (2006), 700–706. https://doi.org/10.1016/j.amc.2006.01.007 doi: 10.1016/j.amc.2006.01.007
    [27] V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [28] V. Kalvandi, M. E. Samei, New stability results for a sum-type fractional $q$–integro-differential equation, J. Adv. Math. Stud., 12 (2019), 201–209.
    [29] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, 2006.
    [30] V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Anal., 69 (2008), 3337–3343. https://doi.org/10.1016/j.na.2007.09.025 doi: 10.1016/j.na.2007.09.025
    [31] R. Li, Existence of solutions for nonlinear singular fractional differential equations with fractional derivative condition, Adv. Differ. Equ., 2014 (2014), 292. https://doi.org/10.1186/1687-1847-2014-292 doi: 10.1186/1687-1847-2014-292
    [32] S. Liang, M. E. Samei, New approach to solutions of a class of singular fractional $q$–differential problem via quantum calculus, Adv. Differ. Equ., 2020 (2020), 14. https://doi.org/10.1186/s13662-019-2489-2 doi: 10.1186/s13662-019-2489-2
    [33] S. Liang, J. Zhang, Existence and uniqueness of positive solutions to $m$-point boundary value problemfor nonlinear fractional differential equation, J. Appl. Math. Comput., 38 (2012), 225–241. https://doi.org/10.1007/s12190-011-0475-2 doi: 10.1007/s12190-011-0475-2
    [34] T. Qiu, Z. Bai, Existence of positive solutions for singular fractional differential equations, Electron. J. Differ. Eq., 2008 (2008), 1–9.
    [35] P. M. Rajković, S. D. Marinković, M. S. Stanković, Fractional integrals and derivatives in $q$–calculus, Appl. Anal. Discr. Math., 1 (2007), 311–323.
    [36] S. Rezapour, M. E. Samei, On the existence of solutions for a multi-singular pointwise defined fractional $q$–integro-differential equation, Bound. Value Probl., 2020 (2020), 38. https://doi.org/10.1186/s13661-020-01342-3 doi: 10.1186/s13661-020-01342-3
    [37] S. M. Esmael, Employing kuratowski measure of non-compactness for positive solutions of system of singular fractional $q$–differential equations with numerical effects, Filomat, 34 (2020), 2971–2989. https://doi.org/10.2298/FIL2009971S doi: 10.2298/FIL2009971S
    [38] M. E. Samei, A. Ahmadi, S. N. Hajiseyedazizi, S. K. Mishra, B. Ram, The existence of non-negative solutions for a nonlinear fractional $q$–differential problem via a different numerical approach, J. Inequal. Appl., 2021 (2021), 75. https://doi.org/10.1186/s13660-021-02612-z doi: 10.1186/s13660-021-02612-z
    [39] M. E. Samei, V. Hedayati, S. Rezapour, Existence results for a fraction hybrid differential inclusion with Caputo-Hadamard type fractional derivative, Adv. Differ. Equ., 2019 (2019), 163. https://doi.org/10.1186/s13662-019-2090-8 doi: 10.1186/s13662-019-2090-8
    [40] M. E. Samei, S. Rezapour, On a system of fractional $q$–differential inclusions via sum of two multi-term functions on a time scale, Bound. Value Probl., 2020 (2020), 135. https://doi.org/10.1186/s13661-020-01433-1 doi: 10.1186/s13661-020-01433-1
    [41] M. E. Samei, H. Zanganeh, S. M. Aydogan, Investigation of a class of the singular fractional integro-differential quantum equations with multi-step methods, J. Math. Ext., 15 (2021), 1–54. https://doi.org/10.30495/JME.SI.2021.2070 doi: 10.30495/JME.SI.2021.2070
    [42] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$–$\mathtt{ψ}$–contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [43] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
    [44] M. Shabibi, M. Postolache, S. Rezapour, S. M. Vaezpour, Investigation of a multisingular pointwise defined fractional integro-differential equation, J. Math. Anal., 7 (2016), 61–77.
    [45] M. Shabibi, S. Rezapour, S. M. Vaezpour, A singular fractional integro-differential equation, UPB Sci. Bull., Ser. A, 79 (2017), 109–118.
    [46] N. E. Tatar, An impulsive nonlinear singular version of the gronwall-bihari inequality, J. Inequal. Appl., 2006 (2006), 1–12. https://doi.org/10.1155/JIA/2006/84561 doi: 10.1155/JIA/2006/84561
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1752) PDF downloads(96) Cited by(13)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog