Research article

Generalizations of strongly hollow ideals and a corresponding topology

  • Received: 02 March 2021 Accepted: 22 August 2021 Published: 13 September 2021
  • MSC : 13A15, 13C05, 13C99, 13C13

  • In this paper, we introduce and study the notions of $ M $-strongly hollow and $ M $-PS-hollow ideals where $ M $ is a module over a commutative ring $ R $. These notions are generalizations of strongly hollow ideals. We investigate some properties and characterizations of $ M $-strongly hollow ($ M $-PS-hollow) ideals. Then we define and study a topology on the set of all $ M $-PS-hollow ideals of a commutative ring $ R $. We investigate when this topological space is irreducible, Noetherian, $ T_{0} $, $ T_{1} $ and spectral space.

    Citation: Seçil Çeken, Cem Yüksel. Generalizations of strongly hollow ideals and a corresponding topology[J]. AIMS Mathematics, 2021, 6(12): 12986-13003. doi: 10.3934/math.2021751

    Related Papers:

  • In this paper, we introduce and study the notions of $ M $-strongly hollow and $ M $-PS-hollow ideals where $ M $ is a module over a commutative ring $ R $. These notions are generalizations of strongly hollow ideals. We investigate some properties and characterizations of $ M $-strongly hollow ($ M $-PS-hollow) ideals. Then we define and study a topology on the set of all $ M $-PS-hollow ideals of a commutative ring $ R $. We investigate when this topological space is irreducible, Noetherian, $ T_{0} $, $ T_{1} $ and spectral space.



    加载中


    [1] A. Abbasi, D. Hassanzadeh-Lelekaami, M. Mirabnejad-Fashkhami, M-strongly irreducible ideals, JP J. Algebra Number T., 24 (2012), 115–124.
    [2] J. Y. Abuhlail, C. Lomp, On the notions of strong irreducibility and its dual, J. Algebra Appl., 12 (2013).
    [3] J. Abuhlail, C. Lomp, On topological lattices and an application to module theory, J. Algebra Appl., 15 (2016), 1650046. doi: 10.1142/S0219498816500468
    [4] J. Abuhlail, Zariski topologies for coprime and second submodules, Algebra Colloq., 22 (2015), 47–72. doi: 10.1142/S1005386715000061
    [5] J. Y. Abuhlail, H. Hroub, PS-Hollow Representations of Modules over Commutative Rings, arXiv: 1804.06968v2 [math.AC] 31 Jul 2019.
    [6] J. Y. Abuhlail, H. Hroub, Zariski-like topologies for lattices with applications to modules over associative rings, J. Algebra Appl., 18 (2019), 1950131. doi: 10.1142/S0219498819501317
    [7] D. D. Anderson, Cancellation modules and related modules, In: D. D. Anderson, Ed, Ideal Theoretic Methods in Commutative Algebra, 13–25. Marcel Dekker, 2001.
    [8] S. E. Atani, Strongly irreducible submodules, Bull. Korean Math. Soc., 42 (2005), 121–131. doi: 10.4134/BKMS.2005.42.1.121
    [9] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, New York, 1969.
    [10] A. Azizi, Hollow modules over commutative rings, Palest. J. Math., 3 (2014), 449–456.
    [11] A. Azizi, Strongly irreducible ideals, J. Aust. Math. Soc., 84 (2008), 145–154.
    [12] A. Barnard, Multiplication modules, J. Algebra, 71 (1981), 174–178.
    [13] G. Chiaselotti, F. Infusino, Alexandroff Topologies and Monoid Actions, Forum Math., 32 (2020), 795–826. doi: 10.1515/forum-2019-0283
    [14] S. Çeken, M. Alkan, P. F. Smith, Second modules over noncommutative rings, Commun. Algebra, 41 (2013), 83–98. doi: 10.1080/00927872.2011.623026
    [15] J. Dobrowolski, Topologies induced by group actions, Topol. Appl., 189 (2015), 136–146. doi: 10.1016/j.topol.2015.04.011
    [16] Z. A. El-Bast, P. F. Smith, Multiplication modules, Commun. Algebra, 16 (1988), 755–779.
    [17] L. Fuchs, W. J. Heinzer, B. Olberding, 2006, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed. In: Abelian Groups, Rings, Modules, and Homological Algebra. Lect. Notes in Pure Appl. Math. 249, Boca Raton, FL: Chapman & Hall/CRC, 121–145.
    [18] L. Fuchs, W. J. Heinzer, B. Olberding, 2006, Commutative ideal theory without finiteness conditions: Completely irreducible ideals. Trans. Amer. Math. Soc. 358, 3113–3131.
    [19] W. J. Heinzer, L. J. Ratliff Jr., D. E. Rush, Strongly irreducible ideals of a commutative ring, J. Pure Appl. Algebra, 166 (2002), 267–275. doi: 10.1016/S0022-4049(01)00043-3
    [20] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43–60. doi: 10.1090/S0002-9947-1969-0251026-X
    [21] M. Hochster, Existence of topologies for commutative rings with identity, Duke Math. J., 38 (1971), 551–554.
    [22] A. Khaksari, M. Ershad, H. Sharif, Strongly irreducible submodules of modules, Acta Math. Sin. (Engl. Ser.), 22 (2006), 1189–1196. doi: 10.1007/s10114-005-0681-7
    [23] Z. Khanjanzadeh, A. Madanshekaf, Weak ideal topology in the topos of right acts over a monoid, Commun. Algebra, 46 (2018), 1868–1888. doi: 10.1080/00927872.2017.1360330
    [24] E. Rostami, Strongly Hollow Elements of Commutative Rings, Journal of Algebra and its Applications, 2020, DOI: 10.1142/S0219498821501073.
    [25] P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50 (1988), 223–235. doi: 10.1007/BF01187738
    [26] R. Wisbauer, Foundations of Module and Ring Theory: A Handbook for Study and Research, Algebra, Logic and Applications, Vol. 3 (Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
    [27] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37 (2001), 273–278.
    [28] Y. Zelenyuk, Ultrafilters and Topologies on Groups, De Gruyter Expositions in Mathematics, Volume 50, De Gruyter–2011.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1972) PDF downloads(140) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog