Research article

On investigations of graphs preserving the Wiener index upon vertex removal

  • Received: 24 October 2020 Accepted: 01 September 2021 Published: 13 September 2021
  • MSC : 05C10, 05C90

  • In this paper, we present solutions of two open problems regarding the Wiener index $ W(G) $ of a graph $ G $. More precisely, we prove that for any $ r \geq 2 $, there exist infinitely many graphs $ G $ such that $ W(G) = W(G - \{v_1, \ldots, v_r\}) $, where $ v_1, \ldots, v_r $ are $ r $ distinct vertices of $ G $. We also prove that for any $ r \geq 1 $ there exist infinitely many graphs $ G $ such that $ W(G) = W(G - \{v_i\}) $, $ 1 \leq i \leq r $, where $ v_1, \ldots, v_r $ are $ r $ distinct vertices of $ G $.

    Citation: Yi Hu, Zijiang Zhu, Pu Wu, Zehui Shao, Asfand Fahad. On investigations of graphs preserving the Wiener index upon vertex removal[J]. AIMS Mathematics, 2021, 6(12): 12976-12985. doi: 10.3934/math.2021750

    Related Papers:

  • In this paper, we present solutions of two open problems regarding the Wiener index $ W(G) $ of a graph $ G $. More precisely, we prove that for any $ r \geq 2 $, there exist infinitely many graphs $ G $ such that $ W(G) = W(G - \{v_1, \ldots, v_r\}) $, where $ v_1, \ldots, v_r $ are $ r $ distinct vertices of $ G $. We also prove that for any $ r \geq 1 $ there exist infinitely many graphs $ G $ such that $ W(G) = W(G - \{v_i\}) $, $ 1 \leq i \leq r $, where $ v_1, \ldots, v_r $ are $ r $ distinct vertices of $ G $.



    加载中


    [1] A. Dobrynin, R. Entringer, I. Gutman, Wiener Index of Trees: Theory and Applications, Acta Appl. Math., 66 (2001), 211–249. doi: 10.1023/A:1010767517079
    [2] E. Estrada, The structure of Complex networks: Theory and Applications, Oxford University press, 2011.
    [3] W. Gao, W. F. Wang, M. R. Farahani, Topological indices study of molecular structure in anticancer drugs, J. Chem., 2016 (2016), 1–8.
    [4] M. Knor, S. Majstorović, R. Škrekovski, Graphs preserving Wiener index upon vertex removal, Appl. Math. Comput., 338 (2018), 25–32.
    [5] M. Knor, S. Majstorović, R. Škrekovski, Graphs whose Wiener index does not change when a specific vertex is removed, Discrete Appl. Math., 238 (2018), 126–132. doi: 10.1016/j.dam.2017.12.012
    [6] M. Knor, R. Škrekovski, M. Dehmer, F. Emmert-Streib, Wiener index of line graphs, Quantitative Graph Theory: Mathematical Foundations and Applications, 279 (2014), 301.
    [7] M. Knor, R. Škrekovski, A. Tepeh, Digraphs with large maximum Wiener index, Appl. Math. Comput., 284 (2016), 260–267.
    [8] M. Knor, R. Škrekovski, A. Tepeh, Mathematical aspects of Wiener Index, Ars Mathematica Contemporanea, 11 (2016), 327–352. doi: 10.26493/1855-3974.795.ebf
    [9] C. Liu, A note on domination number in maximal outerplanar graphs, Discrete Applied Mathematics, 293 (2021), 90-94. doi: 10.1016/j.dam.2021.01.021
    [10] J. B. Liu, M. Javaid, H. M. Awais, Computing Zagreb Indices of the Subdivision-Related Generalized Operations of Graphs, IEEE Access, 7 (2019), 105479–105488. doi: 10.1109/ACCESS.2019.2932002
    [11] M. Liu, B. Liu, A Survey on Recent Results of Variable Wiener Index, MATCH Commun. Math. Comput. Chem., 69 (2013), 491–520.
    [12] J. B. Liu, J. Zhao, S. Wang, M. Javaid, J. Cao, On the topological properties of the certain neural networks, J. Artif. Intell. Soft, 8 (2018), 257–268.
    [13] L. Luo, N. Dehgardi, A. Fahad, Lower Bounds on the Entire Zagreb Indices of Trees, Discrete Dyn. Nat. Soc., 2020 (2020), 1–8.
    [14] L. Šoltés, Transmission in graphs: A bound and vertex removing, Math. Slovaca, 41 (1991), 11–16.
    [15] W. F. Wang, W. Gao, Second atom-bond connectivity index of special chemical molecular structures, J. Chem., 2014 (2014), 1–8.
    [16] C. Wan, Z. Shao, N. Dehgardi, R. Khoeilar, M. Soroudi, A. Fahad, Mixed domination and $2$-independence in trees, AIMS Mathematics, 5 (2020), 5564–5571. doi: 10.3934/math.2020357
    [17] H. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc., 69 (1947), 7–20.
    [18] K. Xu, M. Liu, K. Das, I. Gutman, B. Furtula, A Survey on Graphs Extremal with Respect to Distance Based Topological Indices, MATCH Commun. Math. Comput. Chem., 71 (2014), 461–508.
    [19] A. Ye, M. I. Qureshi, A. Fahad, A. Aslam, M. K. Jamil, A. Zafar, R. Irfan, Zagreb Connection Number Index of nanotubes and regular Hexagonal lattice, Open Chemistry, 17 (2019), 75–80. doi: 10.1515/chem-2019-0007
    [20] D. Zhao, Z. Iqbal, R. Irfan, M. A. Chaudhry, M. Ishaq, M. K. Jameel, A. Fahad, Comparison of irregularity indices of several dendrimers structures, Processes, 7 (2019), 662. doi: 10.3390/pr7100662
    [21] J. Zheng, Z. Iqbal, A. Fahad, A. Zafar, A. Aslam, M. I. Qureshi, R. Irfan, Some Eccentricity-based Topological Indices and Polynomials of Poly(EThyleneAmidoAmine)(PETAA) Dendrimers, Processes, 7 (2019), 433. doi: 10.3390/pr7070433
    [22] X. Zuo, J. B. Liu, Topological Indices of Certain Transformed Chemical Structures, J. Chem., 2020 (2020), 1–7.
    [23] J. Bok, N. Jedličková, J. Maxová, On Relaxed Šoltés's Problem, Acta Math. Univ. Comenianae, 88 (2019), 475–480.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1723) PDF downloads(170) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog