Research article

On the graph connectivity and the variable sum exdeg index

  • Received: 27 July 2020 Accepted: 20 October 2020 Published: 23 October 2020
  • MSC : 05C07, 05C35, 92E10

  • Topological indices are important descriptors which can be used to characterize the structural properties of organic molecules from different aspects. The variable sum exdeg index $SEI_{a}(G)$ of a graph $G$ is defined as $\sum _{u\in V(G)}d_{G}(u)a^{d_{G}(u)}$, where $d_{G}(u)$ is the degree of vertex $u$ and $a$ is an arbitrary positive real number different from 1. In this paper, we obtain the extremal values of the variable sum exdeg indices (for $a>1$) in terms of the number of cut edges, or the number of cut vertices, or the vertex connectivity, or the edge connectivity of a graph. Furthermore, the corresponding extremal graphs are characterized.

    Citation: Jianwei Du, Xiaoling Sun. On the graph connectivity and the variable sum exdeg index[J]. AIMS Mathematics, 2021, 6(1): 607-622. doi: 10.3934/math.2021037

    Related Papers:

  • Topological indices are important descriptors which can be used to characterize the structural properties of organic molecules from different aspects. The variable sum exdeg index $SEI_{a}(G)$ of a graph $G$ is defined as $\sum _{u\in V(G)}d_{G}(u)a^{d_{G}(u)}$, where $d_{G}(u)$ is the degree of vertex $u$ and $a$ is an arbitrary positive real number different from 1. In this paper, we obtain the extremal values of the variable sum exdeg indices (for $a>1$) in terms of the number of cut edges, or the number of cut vertices, or the vertex connectivity, or the edge connectivity of a graph. Furthermore, the corresponding extremal graphs are characterized.


    加载中


    [1] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
    [2] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications I, University of Kragujevac and Faculty of Science Kragujevac, 2010.
    [3] I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications II, University of Kragujevac and Faculty of Science Kragujevac, 2010.
    [4] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609-6615. doi: 10.1021/ja00856a001
    [5] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538. doi: 10.1016/0009-2614(72)85099-1
    [6] D. Vukičević, Bond additive modeling 4. QSPR and QSAR studies of the variable Adriatic indices, Croat. Chem. Acta, 84 (2011), 87-91.
    [7] D. Vukičević, Bond additive modeling 5. mathematical properties of the variable sum exdeg index, Croat. Chem. Acta, 84 (2011), 93-101.
    [8] D. Vukičević, Bond additive modeling. adriatic indices overview of the results, In: Novel Molecular Structure Descriptors. Theory and Applications II, University of Kragujevac and Faculty of Science Kragujevac, 2010,269-302.
    [9] D. Vukičević, Bond additive modeling 6. randomness vs. design, MATCH Commun. Math. Comput. Chem., 65 (2011), 415-426.
    [10] Z. Yarahmadi, A. R. Ashrafi, The exdeg polynomial of some graph operations and applications in nanoscience, J. Comput. Theor. Nanos., 12 (2015), 46-51. doi: 10.1166/jctn.2015.3696
    [11] A. Ghalavand, A. R. Ashrafi, Extremal graphs with respect to variable sum exdeg index via majorization, Appl. Math. Comput., 303 (2017), 19-23.
    [12] S. Khalid, A. Ali, On the zeroth-order general Randić index, variable sum exdeg index and trees having vertices with prescribed degree, Discret. Math. Algorithms Appl., 10 (2018), 1-12.
    [13] D. Dimitrov, A. Ali, On the extremal graphs with respect to the variable sum exdeg index, Discrete Math. Lett., 1 (2019), 42-48.
    [14] M. Javaida, A. Ali, I. Milovanović, E. Milovanović, On the extremal cactus graphs for variable sum exdeg index with a fixed number of cycles, AKCE International Journal of Graphs and Combinatorics, 2020 (2020), 1-4.
    [15] X. Sun, J. Du, On variable sum exdeg indices of quasi-tree graphs and unicyclic graphs, Discrete Dyn. Nat. Soc., 2020 (2020), 1-7.
    [16] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Elsvier Science, New York, 1976.
    [17] Z. Du, B. Zhou, On the Estrada index of graphs with given number of cut edges, Electron. J. Linear Al., 22 (2011), 586-592.
    [18] K. Fang, J. Shu, On graphs with cut vertices and cut edges, Acta Math. Sin., 30 (2014), 539-546. doi: 10.1007/s10114-014-1230-z
    [19] H. Wang, S. Wang, B. Wei, Sharp bounds for the modified multiplicative Zagreb indices of graphs with vertex connectivity at most k, Filomat, 33 (2019), 4673-4685. doi: 10.2298/FIL1914673W
    [20] R. Wu, H. Chen, H. Deng, On the monotonicity of topological indices and the connectivity of a graph, Appl. Math. Comput., 298 (2017), 188-200.
    [21] J. Du, X. Sun, On the multiplicative sum Zagreb index of graphs with some given parameters, J. Math. Inequal., 2020, in press.
    [22] X. Li, Y. Fan, The connectivity and the Harary index of a graph, Discrete Appl. Math., 181 (2015), 167-173. doi: 10.1016/j.dam.2014.08.022
    [23] S. Chen, W. Liu, Extremal Zagreb indices of graphs with a given number of cut edges, Graph. Combinator., 30 (2014), 109-118. doi: 10.1007/s00373-012-1258-8
    [24] S. Akhter, R. Farooq, Eccentric adjacency index of graphs with a given number of cut edges, B. Malays. Math. Sci. So., 43 (2020), 2509-2522. doi: 10.1007/s40840-019-00820-x
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2892) PDF downloads(125) Cited by(4)

Article outline

Figures and Tables

Figures(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog