Citation: Jianwei Du, Xiaoling Sun. On the graph connectivity and the variable sum exdeg index[J]. AIMS Mathematics, 2021, 6(1): 607-622. doi: 10.3934/math.2021037
[1] | R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000. |
[2] | I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications I, University of Kragujevac and Faculty of Science Kragujevac, 2010. |
[3] | I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors-Theory and Applications II, University of Kragujevac and Faculty of Science Kragujevac, 2010. |
[4] | M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609-6615. doi: 10.1021/ja00856a001 |
[5] | I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538. doi: 10.1016/0009-2614(72)85099-1 |
[6] | D. Vukičević, Bond additive modeling 4. QSPR and QSAR studies of the variable Adriatic indices, Croat. Chem. Acta, 84 (2011), 87-91. |
[7] | D. Vukičević, Bond additive modeling 5. mathematical properties of the variable sum exdeg index, Croat. Chem. Acta, 84 (2011), 93-101. |
[8] | D. Vukičević, Bond additive modeling. adriatic indices overview of the results, In: Novel Molecular Structure Descriptors. Theory and Applications II, University of Kragujevac and Faculty of Science Kragujevac, 2010,269-302. |
[9] | D. Vukičević, Bond additive modeling 6. randomness vs. design, MATCH Commun. Math. Comput. Chem., 65 (2011), 415-426. |
[10] | Z. Yarahmadi, A. R. Ashrafi, The exdeg polynomial of some graph operations and applications in nanoscience, J. Comput. Theor. Nanos., 12 (2015), 46-51. doi: 10.1166/jctn.2015.3696 |
[11] | A. Ghalavand, A. R. Ashrafi, Extremal graphs with respect to variable sum exdeg index via majorization, Appl. Math. Comput., 303 (2017), 19-23. |
[12] | S. Khalid, A. Ali, On the zeroth-order general Randić index, variable sum exdeg index and trees having vertices with prescribed degree, Discret. Math. Algorithms Appl., 10 (2018), 1-12. |
[13] | D. Dimitrov, A. Ali, On the extremal graphs with respect to the variable sum exdeg index, Discrete Math. Lett., 1 (2019), 42-48. |
[14] | M. Javaida, A. Ali, I. Milovanović, E. Milovanović, On the extremal cactus graphs for variable sum exdeg index with a fixed number of cycles, AKCE International Journal of Graphs and Combinatorics, 2020 (2020), 1-4. |
[15] | X. Sun, J. Du, On variable sum exdeg indices of quasi-tree graphs and unicyclic graphs, Discrete Dyn. Nat. Soc., 2020 (2020), 1-7. |
[16] | J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Elsvier Science, New York, 1976. |
[17] | Z. Du, B. Zhou, On the Estrada index of graphs with given number of cut edges, Electron. J. Linear Al., 22 (2011), 586-592. |
[18] | K. Fang, J. Shu, On graphs with cut vertices and cut edges, Acta Math. Sin., 30 (2014), 539-546. doi: 10.1007/s10114-014-1230-z |
[19] | H. Wang, S. Wang, B. Wei, Sharp bounds for the modified multiplicative Zagreb indices of graphs with vertex connectivity at most k, Filomat, 33 (2019), 4673-4685. doi: 10.2298/FIL1914673W |
[20] | R. Wu, H. Chen, H. Deng, On the monotonicity of topological indices and the connectivity of a graph, Appl. Math. Comput., 298 (2017), 188-200. |
[21] | J. Du, X. Sun, On the multiplicative sum Zagreb index of graphs with some given parameters, J. Math. Inequal., 2020, in press. |
[22] | X. Li, Y. Fan, The connectivity and the Harary index of a graph, Discrete Appl. Math., 181 (2015), 167-173. doi: 10.1016/j.dam.2014.08.022 |
[23] | S. Chen, W. Liu, Extremal Zagreb indices of graphs with a given number of cut edges, Graph. Combinator., 30 (2014), 109-118. doi: 10.1007/s00373-012-1258-8 |
[24] | S. Akhter, R. Farooq, Eccentric adjacency index of graphs with a given number of cut edges, B. Malays. Math. Sci. So., 43 (2020), 2509-2522. doi: 10.1007/s40840-019-00820-x |