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1. Introduction

Topologies induced by various types of algebraic structures have been attracted attention of many
authors for a long time. For example, in [13, 23] the authors investigated some topologies related to
monoid or induced by monoid actions. In [13]. Given a monoid S acting on a set X, all the subsets
of X which are invariant with respect to the action constitute the family of the closed subsets of an
Alexandroff topology on X. In [13], the authors proved that any Alexandroff topology may be obtained
through a monoid action. Based on such a link between monoid actions and Alexandroff topologies, the
authors established several topological properties for Alexandroff spaces in [13]. In [23], the authors
studied the notion of weak ideal topology jI on the topos Act − S of all (right) representations of S ,
where S is a monoid and I is a left ideal of S . Also, some topologies related to groups or induced by
groups were investigated by some authors. For example, in [15], the authors introduced and studied
some canonical topologies induced by actions of topological groups on groups and rings. In [28],
the author presented the relationship between ultrafilters and topologies on groups. He showed how
ultrafilters are used in constructing topologies on groups with extremal properties and how topologies
on groups serve in deriving algebraic results about ultrafilters (see [28]). Topologies related to rings
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and modules also have been attracted attention of many authors. These topologies have an important
role in characterizing algebraic structures. For example, the Zariski topology on the spectrum of prime
ideals of a ring is one of the main tools in commutative algebra and algebraic geometry (see [9]). Many
of the topologies related to rings and modules were constructed by using a special class of ideals or
submodules (see [1, 3, 4, 6, 11, 21]). In [1, 3, 6, 11] some topologies were defined and studied by
using strongly irreducible submodules and ideals. In [2, 6], some topologies were constructed by using
strongly hollow submodules from a lattice theoretical point of view.

Let R be a commutative ring with identity and M be an R-module. In this paper, we introduce and
investigate M-strongly hollow ideals and M-PS-hollow ideals which are generalizations of strongly
hollow ideals. We establish some properties and characterizations of these ideals and elements. We
generalize most of the results in [24]. We also define and study a topology on the set of all M-PS-
hollow ideals of R. We investigate when this topological space is irreducible, Noetherian, T0, T1 and
spectral space.

After this introductory section, this paper is divided into three parts. In the second section, we recall
some basic concepts which will be used in the sequel. In the third section, first we give the definitions
of M-strongly hollow ideals, M-strongly hollow elements and M-PS-hollow ideals where M is an R-
module. Then we give the relationships between strongly hollow ideals and M-strongly hollow ideals
where M is a multiplication module (see Proposition 3.3). In propositions 3.8, 3.9 and 3.10 we obtain
some results concerning maximal submodules of an module M under some conditions by using M-
strongly hollow ideals and elements. Let (R,m) be a local ring and M be a non-zero multiplication
R-module such that mM is finitely generated. In Proposition 3.11, we give a necessary and sufficient
condition form to be an M-strongly hollow ideal. Let R be a local ring, M be a multiplication R-module
and a be an element of R such that aM , (0). In Theorem 3.14, we give a necessary and sufficient
condition for a to be an M-strongly hollow element of R. Let R = R1 × ... × Rn, M = M1 × ... × Mn

and I be an ideal of R where Ri is a ring and Mi is an Ri-module. In Proposition 3.15, we give a
necessary and sufficient condition for I to be an M-strongly hollow ideal of R. Let I be an ideal of
R and M be an R-module. We define the set T M

I as T M
I := {K : K is an ideal of R and IM * KM}

and we define the ideal ΓM
I as ΓM

I :=
∑

K∈T M
I

K. For an element a of R, we write ΓM
a instead of ΓM

Ra.
In Theorem 3.17, Propositions 3.18 and 3.20, we give some characterizations of M-strongly hollow
ideals and elements by using ΓM

I and ΓM
a . Let M be an R-module and a be an element of R. We denote

the ideal (ΓM
a M : aM) by LM

a , i.e., LM
a := (ΓM

a M : aM) = {r ∈ R : raM ⊆ ΓM
a M}. In Proposition 3.22,

we prove that LM
a is a maximal ideal of R and in Proposition 3.23, we show that the ring R/annR(aM)

is a local ring with unique maximal ideal LM
a /annR(aM). Let M be a finitely generated multiplication

R-module such that annR(M) = Re for some idempotent element e of R and let a be an M-strongly
hollow element of R. In Theorem 3.24, we give some equivalent conditions for (ΓM

a M : aM) to be
a prime ideal of R. Let M be an R-module. We will denote the set of all M-PS-hollow ideals of R
by PS HM(R). In the fourth section we construct a topology on PS HM(R) which we call PSH-Zariski
topology. Let Y be a subset of PS HM(R). In Theorem 4.5, we give a necessary and sufficient condition
for Y to be an irreducible subset of PS HM(R). In Theorem 4.6, we determine irreducible closed subsets
of PS HM(R) and we give a bijection from the set of irreducible components of PS HM(R) onto the set
of maximal elements of PS HM(R) when PS HM(R) is a T0-space. In Theorem 4.7, we determine some
cases in which PS HM(R) is a Noetherian space. We also investigate PS HM(R) from the point of view
of spectral spaces (see Corollaries 4.8 and 4.10). Finally, we examine PS HM(R) in terms of seperation
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axioms (see Propositions 4.9 and 4.11).

2. Recalls and basic notions

Throughout this paper all rings will be commutative with non-zero identity and all modules will be
unital left modules. Unless otherwise stated R will denote a ring. For a submodule N of an R-module
M, (N :R M) will denote the ideal {r ∈ R : rM ⊆ N}. If there is no ambiguity for the ring we will write
(N : M). The annihilator of M which is denoted by annR(M) is (0 :R M). Also, Max(M) and J(M) will
denote the set of all maximal submodules of M and the Jacobson radical of M, i.e., the intersection of
all maximal submodules of M, respectively.

A proper submodule N of an R-module M is called irreducible if for any submodules L and K of
M, N = L ∩ K implies either N = L or N = K. An ideal I of a ring R is said to be irreducible if
it is irreducible as a submodule of the R-module R. Strongly irreducible ideals and submodules are
subclasses of these concepts and they were extensively studied in [2, 8, 11, 17, 19, 22]. A proper
submodule N of an R-module M is called strongly irreducible if for any submodules L and K of M,
L ∩ K ⊆ N implies either L ⊆ N or K ⊆ N. An ideal I of a ring R is said to be strongly irreducible if it
is strongly irreducible as a submodule of the R-module R.

The dual notion of irreducible submodules (ideals) are known as hollow submodules (ideals). Recall
that a non-zero submodule N of an R-module M is called hollow in M if for any submodules K, L of
M, N = K + L implies either N = K or N = L. The dual notion of strongly irreducible submodule
was named as strongly hollow in [4]. They were extensively studied in [2, 4, 6, 24]. Following [4], a
non-zero submodule N of an R-module M is called strongly hollow in M if for any submodules K, L
of M, N ⊆ K + L implies either N ⊆ K or N ⊆ L. An ideal I of a ring R is said to be strongly hollow if
it is strongly hollow as a submodule of the R-module R. A non-zero element a of R is called a strongly
hollow element in R if the principal ideal (a) is a strongly hollow ideal of R [24].

In [5], Abuhlail and Hroub generalized the concept of strongly hollow submodule as follows. A
submodule N of an R-module M is called pseudo strongly hollow (or PS-hollow for short) if, for any
ideal I of R and any submodule L of M, N ⊆ IM +L implies either N ⊆ IM or N ⊆ L. The module M is
called pseudo strongly hollow module (or PS-hollow module for short) if M is a PS-hollow submodule
of itself [5].

3. M-strongly hollow and M-PS-hollow ideals

In this section, we introduce and study M-strongly hollow ideals, M-strongly hollow elements and
M-PS-hollow ideals.

Definition 3.1. Let M be an R-module and I be an ideal of R. We say that I is an M-strongly hollow
(respectively, M-PS-hollow) ideal of R if IM is a strongly hollow (respectively PS-hollow) submodule
of M. An element a of R is called an M-strongly hollow (respectively, M-PS-hollow) element if aM is
a strongly hollow (respectively, M-PS-hollow) submodule of M.

Recall that an R-module M is said to be multiplication if every submodule N of M is of the form
N = IM for some ideal I of R. It is well-known that M is a multiplication module if and only if every
submodule N of M is of the form N = (N : M)M (see [12]).
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Note that if M is a multiplication R-module, then the concept of M-strongly hollow ideal coincides
with the concept of M-PS-hollow ideal.

Notice that if we take M = R, then an ideal I of R is strongly hollow (respectively PS-hollow) if and
only if I is R-strongly hollow (respectively R-PS-hollow).

Clearly, every M-strongly hollow ideal of a ring R is M-PS-hollow for any R-module M. But the
converse is not true in general as the following example shows.

Example 3.2. Consider the ring R := Zpq where p and q are distinct prime numbers and the R-module
M := R[X]. In [5, Example 2.12] it was shown that (p)M and (q)M are PS-hollow submodules of
M while they are not strongly hollow. So (p) and (q) are M-PS-hollow ideals of R but they are not
M-strongly hollow ideals of R.

In the following proposition we give the relationships between strongly hollow ideals and M-
strongly hollow ideals where M is a multiplication module.

Proposition 3.3. Let M be a multiplication R-module and I be an ideal of R. Then the following hold.
(1) Suppose that M is finitely generated and faithful. Then I is a strongly hollow ideal of R if and

only if I is an M-strongly hollow ideal of R.
(2) If M is finitely generated and I is a strongly hollow ideal of R, then I is an M-strongly hollow

ideal of R.

Proof. (1) This result can be easily proved by using [16, Theorem 3.1].
(2) Let IM ⊆ JM + KM for some ideals J, K of M. Then I ⊆ J + K + annR(M) by [25, Corollary of

Theorem 9]. Since I is a strongly hollow ideal, we have either I ⊆ J or I ⊆ K + annR(M). This implies
that IM ⊆ JM or IM ⊆ KM. Thus I is an M-strongly hollow ideal of R. �

In the following example we show that the converse of Proposition 3.3-(2) is not true in general.

Example 3.4. Consider the Z-module M := Z30. Clearly, M is a finitely generated multiplication
Z-module. Consider the submodule N := (6) = (6Z)M. In [5, Example 2.33] it was shown that N is a
strongly hollow (PS-hollow) submodule of M. So 6Z is an M-strongly hollow ideal of Z. But 6Z is not
a strongly hollow ideal of Z. Because 6Z ⊆ 4Z + 18Z = 2Z while 6Z * 4Z and 6Z * 18Z.

In the following proposition we give some basic properties of M-strongly hollow and M-PS-hollow
ideals.

Proposition 3.5. Let M be an R-module. Then the following hold.
(1) If I is an M-strongly hollow (respectively M-PS-hollow) ideal of R, then (IM :R M) is an M-

strongly hollow (respectively, M-PS-hollow) ideal of R
(2) If {Iλ}λ∈Λ is a family of M-strongly hollow (respectively, M-PS-hollow) ideals of R with IλM = N

for each λ ∈ Λ, then
∑
λ∈Λ Iλ is an M-strongly hollow (respectively, M-PS-hollow) ideal of R.

(3) If M is a uniserial R-module, then every ideal I of R with IM , (0) is an M-strongly hollow
(M-PS-hollow) ideal of R.

(4) If R is a uniserial ring and M is a multiplication R-module, then every ideal I of R with IM , (0)
is an M-strongly hollow ideal of R.

(5) If I is a finitely generated M-strongly hollow (respectively M-PS-hollow) ideal of R, then there
exists an element x ∈ I such that x is an M-strongly hollow (respectively M-PS-hollow) element of R.
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(6) Let a1,...,an be M-strongly hollow (M-PS-hollow) elements of R such that aiM *
∑

i, j a jM for
each i ∈ {1, ..., n}. Then

∑n
j=1 a jM = (a1 + ...an)M.

Proof. (1) This follows from the equality (IM : M)M = IM.
(2) Since (

∑
λ∈Λ Iλ)M =

∑
λ∈Λ(IλM) = N, we deduce that

∑
λ∈Λ Iλ is an M-strongly hollow (respec-

tively, M-PS-hollow) ideal of R.
(3) This follows from the fact that every non-zero submodule of a uniserial module is an M-strongly

hollow (M-PS-hollow) submodule of M.
(4) Every multiplication module over a uniserial ring is a uniserial module. So the result follows

from part (3).
(5) Let I =

∑n
i=1 Rxi where xi ∈ I and n ∈ Z+. Then we have IM = (

∑n
i=1 Rxi)M =

∑n
i=1(Rxi)M.

By assumption, there exists j ∈ {1, ..., n} such that IM ⊆ (Rx j)M ⊆
(∑n

i=1 Rxi
)

M = IM and so
IM = (Rx j)M. Therefore, Rx j is an M-strongly hollow (respectively M-PS-hollow) ideal of R.

(6) We use induction on n. If n = 1, then the result is evident. Suppose that n ≥ 2 and the
result is true for n − 1. Since anM *

∑n−1
j=1 a jM and anM ⊆ (a1 + ... + an)M +

∑n−1
j=1 a jM, we have

anM ⊆ (a1 + ...+ an)M. Thus (a1 + ...+ an)M = anM + (a1 + ...+ an−1)M. By the inductive hypothesis,∑n−1
j=1 a jM = (a1 + ... + an−1)M. Therefore,

∑n
j=1 a jM = (a1 + ... + an)M. �

The following proposition gives some further properties of M-strongly hollow (M-PS-hollow) ide-
als and it will be used in the sequel.

Proposition 3.6. Let M be an R-module. Then the following hold.
(1) If IM is finitely generated and I is an M-strongly hollow (M-PS-hollow) ideal of R, then the set

Ψ = {JM : J is an ideal of R such that JM  IM} has exactly one maximal element with respect to
inclusion.

(2) Let I and J be two M-strongly hollow (respectively, M-PS-hollow) ideals of R. Then I + J is an
M-strongly hollow (respectively, M-PS-hollow) ideal of R if and only if either IM ⊆ JM or JM ⊆ IM.

Proof. (1) Clearly, (0)M = (0) ∈ Ψ whence Ψ , ∅. Let {JαM}α∈A be a chain in Ψ. Then ∪α∈A(JαM) =∑
α∈A(JαM) = (

∑
α∈A Jα)M and ∪α∈A(JαM)  IM as IM is finitely generated. Therefore ∪α∈A(JαM) ∈

Ψ. By Zorn’s Lemma, Ψ has at least one maximal element. Suppose that J1M and J2M be two maximal
elements of Ψ where J1, J2 are ideals of R. Then IM = J1M + J2M by the maximalities of J1M and
J2M. Since IM is an M-strongly hollow (M-PS-hollow) submodule, we have either IM ⊆ J1M or
IM ⊆ J2M, a contradiction. Thus Ψ has exactly one maximal element with respect to inclusion.

(2) This proof is straightforward. �

Recall that a non-zero submodule N of an R-module M is called a second submodule if IN = (0)
or IN = N for every ideal I of R (see [14], [27]). We use second submodules to give an example of
M-strongly hollow ideal.

Example 3.7. Let M be a multiplication R-module, I be an ideal of R and IM be a second submodule
of M such that I2M = IM. Then I is an M-strongly hollow ideal of R. To see this let IM ⊆ JM + KM
for some ideals J, K of R. Suppose that IM * JM and IM * KM. Then IJM = IKM = (0). Hence
I2M = IM ⊆ IJM + IKM = (0) whence IM = (0), a contradiction.

In the following proposition we obtain a result concerning maximal submodules of an R-module M
by using M-strongly hollow ideals.
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Proposition 3.8. Let M be an R-module, I be an ideal of R. If I is an M-strongly hollow ideal of R,
then either IM ⊆ J(M) or there exists exactly one maximal submodule of M not containing IM.

Proof. Suppose that IM * J(M). Then there exists a maximal submodule P of M such that IM * P.
Let Q be another maximal submodule of M. Then P + Q = M and so IM = IP + IQ. Since IM is a
strongly hollow submodule, we have IM ⊆ Q. �

Recall that a module which has only one maximal submodule is said to be a local module [26].
In the following proposition we obtain a result concerning the number of maximal submodules of a
finitely generated multiplication R-module M by using M-strongly hollow ideals.

Proposition 3.9. Let M be a finitely generated multiplication R-module such that M = I1M + ...+ InM
where Ii is an M-strongly hollow ideal of R for each i ∈ {1, ..., n}. Then M has only a finite number of
maximal submodules.

Proof. If I jM = M for some j ∈ {1, ..., n}, then M is a local module and we are done. So we may
assume that IiM , M for all i ∈ {1, ..., n}. Note that each IiM is contained in at least one maximal
submodule and for each i, either IiM ⊆ J(M) or there exists exactly one maximal submodule of M not
containing IiM. Hence M has at most n maximal submodule. �

Let M be an R-module. Recall that an element a of R is said to be a zero-divisor of M if there exists
a non-zero element m ∈ M such that am = 0. In the following proposition we deal with M-strongly
hollow elements which are not zero-divisors of M.

Proposition 3.10. Let M be a non-zero multiplication R-module. If R has an M-strongly hollow ele-
ment which is not a zero-divisor of M, then M is a local module.

Proof. M has a maximal submodule by [16, Theorem 2.5]. Let R have an M-strongly hollow element
a which is not a zero-divisor of M. Suppose that P and Q are distinct maximal submodules of M.
Then P = pM and Q = qM for some maximal ideals p, q of R by [16, Theorem 2.5]. We have
pM + qM = (p + q)M = M. Since p + q = R, there exit x ∈ p, y ∈ q such that x + y = 1. It
follows that aM ⊆ xaM + yaM. Since aM is a strongly hollow submodule, either aM ⊆ xaM or
aM ⊆ yaM. Assume that aM ⊆ xaM. Let m ∈ M. Then am = xam′ for some m′ ∈ M. It follows
that a(m − xm′) = 0. Since a is not a zero-divisor of M, we have m = xm′ ∈ pM = P. This yields the
contradiction that M = P. Similarly, if aM ⊆ yM, then we get the contradiction that M = Q. Thus M
has only one maximal submodule. �

In the following proposition we give a necessary and sufficient condition for the maximal ideal of a
local ring to be an M-strongly hollow ideal where M is a multiplication module satisfying an additional
condition.

Proposition 3.11. Let (R,m) be a local ring and M be a non-zero multiplication R-module such that
mM is finitely generated. Then m is an M-strongly hollow ideal of R if and only if (0) , mM = xM for
some x ∈ m.

Proof. First note that mM is the only maximal submodule of M by [16, Theorem 2.5]. Every mul-
tiplication module over a local ring is cyclic by [12, Theorem 1]. So M is cyclic and hence finitely
generated. We may assume that M is not simple.
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Suppose that m is an M-strongly hollow ideal of R. We have m =
∑

xi∈m
Rxi whence mM =∑

xi∈m
(RxiM). Since mM is finitely generated, there exist xi1 , ..., xin ∈ m such that mM =

∑n
j=1 xi j M for

some positive integer n. By assumption, mM = xik M for some k ∈ {1, ..., n}.
Conversely, suppose that mM = xM for some x ∈ m and mM ⊆ IM + JM for some ideals I, J of

R. If either IM = M or JM = M, then we are done. So we may assume that IM , M and JM , M.
Since I, J are proper ideals and R is local, I + J ⊆ m and so (I + J) M = IM + JM ⊆ mM. Thus
mM = xM = (I+J)M. By [25, Corollary of Theorem 9], we havem = Rx+annR(M) = I+J+annR(M).
So x = a + b + c for some a ∈ I, b ∈ J and c ∈ annR(M). Since I, J ⊆ m, there exist r1, r2 ∈ R and s1,
s2 ∈ annR(M) such that a = r1x + s1 and b = r2x + s2. Thus x = r1x + r2x + s for some s ∈ annR(M) and
so x(1− (r1 +r2)) = s. If r1, r2 ∈ m, then 1− (r1 +r2) is a unit and so xM = 0, a contradiction as M is not
simple. Thus either r1 < m or r2 < m. Assume that r1 < m, then r1 is a unit and so x ∈ Ra + annR(M).
Thus xM ⊆ RaM ⊆ IM. Similarly, if r2 ∈ m, we get that xM ⊆ JM. Therefore m is an M-strongly
hollow ideal of R. �

The following lemma which will be used in the sequel gives a characterization of an M-strongly
hollow element where M is a finitely generated multiplication R-module.

Lemma 3.12. Let M be a finitely generated multiplication R-module and a be an element of R such
that aM , (0). Then the following are equivalent.

(1) a is an M-strongly hollow element of R.
(2) For every y ∈ R, if aM * yM, then there exist an x ∈ R and z ∈ annR(M) such that a(1 − x) =

xy + z.

Proof. (1) =⇒ (2) Suppose that aM * yM for y ∈ R. Since aM ⊆ (a + y)M + (−y)M, we have
aM ⊆ (a + y)M. By [25, Corollary of Theorem 9], Ra ⊆ R(a + y) + annR(M). So a = x(a + y) + z for
some x ∈ R, z ∈ annR(M). It follows that a(1 − x) = xy + z.

(2) =⇒ (1) Suppose that aM ⊆ JM + KM for some ideals J, K of R. By [25, Corollary of
Theorem 9], Ra ⊆ J + K + annR(M). So a = r + s + t for some r ∈ J, s ∈ K, t ∈ annR(M). If
aM * rM = (−r)M, then there exist x ∈ R and z ∈ annR(M) such that a(1 − x) = x(−r) + z. Thus
a = xa − xr + z = x(a − r) + z = x(s + t) + z. It follows that aM ⊆ xsM ⊆ KM. If aM ⊆ rM, then
clearly, aM ⊆ JM. Thus a is an M-strongly hollow element of R. �

We obtain the following proposition as an application of Lemma 3.12.

Proposition 3.13. Let M be a finitely generated multiplication R-module and a be an M-strongly
hollow element of R. If b is an element of R such that aM∩bM = (0), then annR(aM) + annR(bM) = R.

Proof. Let b be an element of R such that aM ∩ bM = (0). Hence aM * bM. By Lemma 3.12, there
exist x ∈ R and z ∈ annR(M) such that a(1 − x) = xb + z. Thus a(1 − x)M = xbM ⊆ aM ∩ bM = (0).
Hence 1 − x ∈ annR(aM), x ∈ annR(bM) and so annR(aM) + annR(bM) = R. �

Recall that a submodule N of an R-module M is called a waist submodule if it is comparable with
every submodule of M [2]. In the following theorem we give a relationship between M-strongly hollow
elements and waist submodules where R is a local ring and M is a multiplication R-module.

Theorem 3.14. Let R be a local ring, M be a multiplication R-module and a be an element of R such
that aM , (0). Then a is an M-strongly hollow element of R if and only if aM is a waist submodule of
M.
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Proof. Suppose that a is an M-strongly hollow element of R and N is a submodule of M such that
aM * N. There exists an ideal J of R such that N = JM. Also, since R is a local ring, M is a cyclic
and hence a finitely generated R-module by [12, Theorem 1]. Let y ∈ J. Then, aM * yM. By Lemma
3.12, there exist x ∈ R, z ∈ annR(M) such that a(1 − x) = xy + z. Since R is a local ring and aM * yM,
x must be unit.Thus y ∈ Ra + annR(M) and so yM ⊆ aM. This shows that N = JM ⊆ aM. Hence aM
is a waist submodule of M.

Conversely, suppose that aM is a non-zero waist submodule of M such that aM ⊆ BM + CM
for some ideals B, C of R. If aM * BM, then BM ⊆ aM. By [25, Corollary of Theorem 9], B ⊆
Ra + annR(M) and Ra ⊆ B + C + annR(M). Thus a = r + s + z for some r ∈ B, s ∈ C, z ∈ annR(M) and
r = aa′ + t for some a′ ∈ R and t ∈ annR(M). It follows that a = aa′ + s + k for some k ∈ annR(M)
and we have a(1 − a′) = s + k. Since aM * BM and R is a local ring, 1 − a′ must be unit. Thus
aM ⊆ sM ⊆ CM and so a is an M-strongly hollow element of R. �

Let R = R1 × ... × Rn, M = M1 × ... × Mn and I be an ideal of R where Ri is a ring and Mi is
an Ri-module. The following proposition gives a characterization of M-strongly hollow ideals and
M-strongly hollow elements of R.

Proposition 3.15. Let R = R1× ...×Rn, M = M1× ...×Mn and I be an ideal of R where Ri is a ring and
Mi is an Ri-module. Then I is an M-strongly hollow ideal of R if and only if there exists i ∈ {1, ..., n}
such that the submodule IM is of the form IM = 0 × ...0 × IiMi × 0 × ... × 0 where Ii is an Mi-strongly
hollow ideal of Ri. In particular, an element a = (a1, ..., an) of R is M-strongly hollow if and only if
there exists i ∈ {1, ..., n} such that the submodule aM is of the form aM = 0 × ... × 0 × aiMi × 0 × ... × 0
where ai is an Mi-strongly hollow element of Ri.

Proof. Let I be an M-strongly hollow ideal of R. It is well-known that I = I1 × ... × In where I j is an
ideal of R j for each j ∈ {1, ..., n}. For each j, put I′j = 0 × ... × I j × 0 × ... × 0. Thus I = I′1 × ... × I′n
whence IM = I′1M + ...+ I′nM. Since IM is a strongly hollow submodule, there exists i ∈ {1, ..., n} such
that IM ⊆ I′i M and so IM = I′i M. Hence, IM = 0 × ... × IiMi × 0 × ... × 0. Now we show that Ii is
an Mi-strongly hollow ideal of Ri. Let IiMi ⊆ Ki + Li where Ki and Li are submodules of Mi. Then
IM ⊆ (0 × ... × Ki × 0 × ... × 0) + (0 × ... × Li × 0 × ... × 0). Thus, either IM ⊆ 0 × ... × Ki × 0 × ... × 0
or IM ⊆ 0 × ... × Li × 0 × ... × 0. Hence, either IiMi ⊆ Ki or IiMi ⊆ Li. So Ii is an Mi-strongly hollow
ideal of Ri.

Conversely, suppose that the submodule IM is of the form IM = 0× ...0× IiMi × 0× ...× 0 where Ii

is an Mi-strongly hollow ideal of Ri for some i ∈ {1, ..., n}. Let N = N1 × ... × Nn and L = L1 × ... × Ln

be two submodules of M such that IM ⊆ N + L. Then we have IiMi ⊆ Ni + Li. Hence, either IiMi ⊆ Ni

or IiMi ⊆ Li. So either IM ⊆ N or IM ⊆ L. Thus I is an M-strongly hollow ideal of R. �

We obtain the following corollary by combining Proposition 3.15 and Theorem 3.14.

Corollary 3.16. Let R = R1 × ... × Rn, M = M1 × ... × Mn and a = (a1, ..., an) be an element of R
where Ri is a local ring and Mi is a multiplication Ri-module for each i. Then a is an M-strongly
hollow element of R if and only if there exists i ∈ {1, ..., n} such that the submodule aM is of the form
aM = 0 × ... × 0 × aiMi × 0 × ... × 0 where aiMi is a non-zero waist submodule of Mi.

Let I be an ideal of R and M be an R-module. We define the set T M
I as T M

I := {K : K is an ideal of
R and IM * KM} and we define the ideal ΓM

I as ΓM
I :=

∑
K∈T M

I
K. For an element a of R, we write ΓM

a
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instead of ΓM
Ra. We adopt these notations in the rest of the paper. Clearly if IM is a non-zero submodule,

then T M
I , ∅ as (0) ∈ T M

I .
In the following theorem we give a characterization of an M-strongly hollow ideal I by using T M

I
where M is a multiplication R-module such that IM is a non-zero finitely generated submodule of M.

Theorem 3.17. Let M be a multiplication R-module, I be an ideal of R such that IM is a non-zero
finitely generated submodule of M. Then I is an M-strongly hollow ideal of R if and only if there exists
an ideal J of R which is the greatest element of the set T M

I , namely J = ΓM
I .

Proof. Let I be an M-strongly hollow ideal of R. Suppose that IM ⊆ ΓM
I M. Then IM ⊆

∑
K∈T M

I
KM.

Since IM is finitely generated and strongly hollow, IM ⊆ KM for some K ∈ T M
I which contradicts the

definition of T M
I . So IM * ΓM

I M. By definition of ΓM
I , ΓM

I is the greatest element of T M
I .

Now suppose that T M
I has the greatest element, say J. Let IM ⊆ I1M + I2M for some ideals I1, I2

of R. Suppose that IM * IiM for each i ∈ {1, 2}. Fix i ∈ {1, 2}. Set T M
i := {K : K is an ideal of R

such that IiM ⊆ KM and IM * KM}. Then T M
i , ∅ as Ii ∈ T M

i . Since IM is finitely generated, T M
i

has a maximal element by Zorn’s Lemma. Let Ai be a maximal element of Ti. Then Ai ⊆ J whence
IiM ⊆ AiM ⊆ JM. Thus J ∈ T M

i . By the maximality of Ai, we have Ai = J. Thus I1M ⊆ JM and
I2M ⊆ JM whence IM ⊆ JM, a contradiction. Therefore I is an M-strongly hollow ideal of R. �

In the following proposition we give a characterization of an M-strongly hollow element a by using
ΓM

a where M is a multiplication R-module such that aM is a non-zero finitely generated submodule of
M.

Proposition 3.18. Let M be a multiplication R-module, a be an element of R such that aM is a non-
zero finitely generated submodule of M. Then a is an M-strongly hollow element of R if and only if
aM * ΓM

a M. In this case ΓM
a = {r ∈ R : aM * rM}.

Proof. Suppose that a is an M-strongly hollow element of R. Then aM * ΓM
a M by Theorem 3.17.

Suppose that aM * ΓM
a M and aM ⊆ I1M + I2M for some ideals I1, I2 of R. If aM * I1M and

aM * I2M, then I1 ⊆ ΓM
a and I2 ⊆ ΓM

a . Hence aM ⊆ I1M + I2M ⊆ ΓM
a M which is a contradiction. Thus

a is an M-strongly hollow element of R.
Now, let r ∈ ΓM

a . Then r = x1 + ... + xn for some positive integer n and xi ∈ Ki (1 ≤ i ≤ n) where
Ki ∈ T M

Ra, i.e., aM * KiM. We have rM ⊆ x1M + ... + xnM. If aM ⊆ rM, then aM ⊆ x jM ⊆ K jM
for some j ∈ {1, ..., n} as aM is a strongly hollow submodule. But this is a contradiction. So aM * rM
whence ΓM

a ⊆ {r ∈ R : aM * rM}. The reverse inclusion is clear by definition. Thus ΓM
a = {r ∈ R :

aM * rM}. �

Corollary 3.19. Let M be a multiplication R-module, a and b be two M-strongly hollow elements of R
such that aM and bM are finitely generated submodules of M. Then aM ⊆ bM if and only if ΓM

a ⊆ ΓM
b .

Proof. Suppose that aM ⊆ bM and r ∈ ΓM
a . Then by Proposition 3.18, aM * rM and this implies that

bM * rM. So b ∈ ΓM
a by Proposition 3.18. Thus ΓM

a ⊆ ΓM
b .

Suppose that ΓM
a ⊆ ΓM

b . If aM * bM, then b ∈ ΓM
a ⊆ ΓM

b by Proposition 3.18. But this contradicts
with the fact that b < ΓM

b . Thus aM ⊆ bM. �

In the following proposition we investigate when Ra + Rb is an M-strongly hollow ideal where M
is a multiplication R-module, a and b are M-strongly hollow elements.
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Proposition 3.20. Let M be a multiplication R-module, a and b be two M-strongly hollow elements of
R such that aM and bM are finitely generated submodules of M. Then the following are equivalent.

(1) Ra + Rb is an M-strongly hollow ideal of R.
(2) Either ΓM

a ⊆ ΓM
b or ΓM

b ⊆ ΓM
a .

(3) Either aM ⊆ bM or bM ⊆ aM.

Proof. (1) =⇒ (2) Let Ra + Rb be an M-strongly hollow ideal of R. Suppose on the contrary that
ΓM

a * ΓM
b or ΓM

b * ΓM
a . Thus there exist x ∈ ΓM

a \Γ
M
b and y ∈ ΓM

b \Γ
M
a . By Proposition 3.18, we have

aM + bM = (Ra + Rb)M ⊆ xM + yM. But (Ra + Rb)M * xM and (Ra + Rb)M * yM which is a
contradiction.

(2) =⇒ (3) By Corollary 3.19.
(3) =⇒ (1) Clear. �

Let M be an R-module and a be an element of R. We denote the ideal (ΓM
a M : aM) by LM

a , i.e.,
LM

a := (ΓM
a M : aM) = {r ∈ R : raM ⊆ ΓM

a M}.
In the following proposition we investigate M-strongly hollow elements of quotient rings.

Proposition 3.21. Let M be a multiplication R-module, a be an M-strongly hollow element of R such
that aM is a finitely generated submodule of M and I be an ideal of R such that aM * IM. Then
a + I is an M-strongly hollow element of R/I where M = M/IM. In this case, ΓM

a+I = ΓM
a /I and

(LM
a + I)/I = LM

a+I .

Proof. Since aM * IM, I ⊆ ΓM
a and (a + I)(M/IM) , (0). Note that M/IM is a multiplication (R/I)-

module. Let (a + I)(M/IM) = (aM + IM) /IM ⊆ (J/I)(M/IM) + (K/I)(M/IM) for some ideals J, K
of R containing I. Then aM ⊆ JM + KM + IM. Thus we have either aM ⊆ JM or aM ⊆ KM + IM
and so either (aM + IM)/IM = (a + I)(M/IM) ⊆ (JM + IM)/IM = (J/I)(M/IM) or (a + I)(M/IM) =

(aM + IM)/IM ⊆ (KM + IM)/IM = (K/I)(M/IM). Therefore, a + I is an M-strongly hollow element
of R/I.

Now let r + I ∈ ΓM
a+I . Assume that r < ΓM

a . Then aM ⊆ rM by Proposition 3.18. Thus (aM +

IM)/IM = (a+I)(M/IM) ⊆ (rM+IM)/IM = (r+I)(M/IM) which contradicts r+I ∈ ΓM
a+I . Thus r ∈ ΓM

a

and so ΓM
a+I ⊆ ΓM

a /I. Since aM * ΓM
a M, we have (a + I)(M/IM) = (aM + IM)/IM * (ΓM

a /I)(M/IM).
So ΓM

a /I ⊆ ΓM
a+I . Therefore, ΓM

a /I = ΓM
a+I .

Now we show that (LM
a + I)/I = LM

a+I . Let r + I ∈ (LM
a + I)/I where r ∈ LM

a . Then raM ⊆ ΓM
a M.

Note that LM
a+I = (ΓM

a+I M : (a + I)M) = {r + I : (r + I)(a + I)M ⊆ ΓM
a+I M} = {r + I : (raM + IM) /IM ⊆(

ΓM
a M

)
/IM}. Thus raM ⊆ ΓM

a M implies that (raM + IM) /IM ⊆
(
ΓM

a M
)
/IM whence r + I ∈ LM

a+I .

Therefore, (LM
a + I)/I ⊆ LM

a+I . To show the reverse inclusion, take an element r + I ∈ LM
a+I . Then we

have (raM + IM) /IM ⊆
(
ΓM

a M
)
/IM whence raM ⊆ ΓM

a M. This shows that r ∈ (ΓM
a M : aM) = LM

a .

Thus r + I ∈ (LM
a + I)/I whence LM

a+I ⊆ (LM
a + I)/I. Hence LM

a+I = (LM
a + I)/I. �

By using Proposition 3.21, we show that LM
a is a maximal ideal of R for an M-strongly hollow

element a of R under some conditions.

Proposition 3.22. Let M be a multiplication R-module and a be an M-strongly hollow element of R
such that aM is finitely generated. Then LM

a is a maximal ideal of R.
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Proof. Let a be an M-strongly hollow element of R. Then aM * ΓM
a M by Proposition 3.18. Thus

a + ΓM
a is an (M/ΓM

a M)-strongly hollow element of R/ΓM
a by Proposition 3.21. Now we show that

(a + ΓM
a )M is a simple submodule of the (R/ΓM

a )-module M where M = M/ΓM
a M. Let x + ΓM

a M be an
element of (a+ΓM

a )M such that < x+ΓM
a M >= (Rx+ΓM

a M)/ΓM
a M  (a+ΓM

a )M = (aM +ΓM
a M)/ΓM

a M.
Then aM * Rx. Since M is multiplication, there exists an ideal I of R such that Rx = IM. So aM * IM
whence I ⊆ ΓM

a . Thus IM = Rx ⊆ ΓM
a M whence x ∈ ΓM

a M. Therefore, < x + ΓM
a M >= (0). This shows

that (a + ΓM
a )M is a simple submodule of M. Hence annR/ΓM

a
((a + ΓM

a )M) is a maximal ideal of R/ΓM
a .

It is easy to see that annR/ΓM
a

((a + ΓM
a )M) = (ΓM

a M :R aM)/ΓM
a = LM

a /Γ
M
a . Thus LM

a /Γ
M
a is a maximal

ideal of R/ΓM
a and so LM

a is a maximal ideal of R. �

In the following proposition we show that the ring R/annR(aM) is a local ring for an M-strongly
hollow element a of R under some conditions.

Proposition 3.23. Let M be a multiplication R-module and a be an M-strongly hollow element of R
such that aM is finitely generated. Then the ring R/annR(aM) is a local ring with unique maximal
ideal LM

a /annR(aM).

Proof. Since aM is a finitely generated strongly hollow submodule of M, it is a hollow module with
Max(aM) , ∅. Hence R/annR(aM) is a local ring by [10, Theorem 2.2]. Also, by Proposition 3.22,
LM

a is a maximal ideal of R. Since annR(aM) ⊆ LM
a , we conclude that R/annR(aM) is a local ring with

the unique maximal ideal LM
a /annR(aM). �

Let M be a finitely generated multiplication R-module such that annR(M) = Re for some idempotent
element e of R and let a be an M-strongly hollow element of R. In the following theorem we give some
equivalent conditions for (ΓM

a M : aM) to be a prime ideal of R.

Theorem 3.24. Let M be a finitely generated multiplication R-module such that annR(M) = Re for
some idempotent element e of R and let a be an M-strongly hollow element of R. Then the following
are equivalent.

(1) (ΓM
a M :R M) is a prime ideal of R.

(2) a2M * ΓM
a M.

(3) aM = a2M.
(4) aM * J(M).
(5) (ΓM

a M :R M) is a maximal ideal of R.
(6) (ΓM

a M :R M) = LM
a .

Proof. (1) =⇒ (2) By Proposition 3.18, we have a < (ΓM
a M :R M). Thus a2 < (ΓM

a M :R M) whence
a2M * ΓM

a M.
(2) =⇒ (3) Since a2M * ΓM

a M, we have a2 < ΓM
a . By Proposition 3.18, aM ⊆ a2M whence

aM = a2M.
(3) =⇒ (4) By [25, Theorem 11], M is a projective R-module. So J(M) = J(R)M (see [26, page

113]). Since M is multiplication, J(M) = (J(M) : M)M = J(R)M. [25, Corollary of Theorem
9] implies that (J(M) : M) = J(R) + annR(M). Suppose on the contrary that aM ⊆ J(M). Then
a ∈ J(R) + annR(M) and so there exist b ∈ J(R) and c ∈ annR(M) such that a = b + c. Since
(b + c)M = bM, we have b2M = bM. By Nakayama’s Lemma, bM = (0) whence b ∈ annR(M). This
implies that aM = (0), a contradiction. Thus aM * J(M).
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(4) =⇒ (5) Suppose aM * J(M). By Proposition 3.8, there exists a unique maximal submodule
Q of M not containing aM. Since M is multiplication, Q = qM for some maximal ideal q of R by
[16, Theorem 2.5]. Since aM * qM, we have q ⊆ ΓM

a . Hence ΓM
a = q is a maximal ideal of R. Also,

ΓM
a ⊆ (ΓM

a M : M) , R implies that (ΓM
a M : M) = ΓM

a is a maximal ideal of R.
(5) =⇒ (1) Clear.
(5) =⇒ (6) We have (ΓM

a M : M) ⊆ (ΓM
a M : aM) = LM

a , R. Thus (ΓM
a M :R M) = LM

a .
(6) =⇒ (1) This follows from Proposition 3.22. �

In the following proposition we investigate the behaviour of M-strongly hollow elements under
localization where M is a finitely generated multiplication R-module.

Proposition 3.25. Let M be a finitely generated multiplication R-module and a be an M-strongly
hollow element of R. Then a

1 is an (S −1M)-strongly hollow element of S −1R where S = R\LM
a . In this

case, ΓS −1 M
a
1

= S −1ΓM
a and LM

a
1

= S −1LM
a .

Proof. If (a
1 )(S −1M) = S −1(aM) = (0), then there exists s ∈ R\LM

a such that s(aM) = (0) as aM is
finitely generated. This yields the contradiction that s ∈ LM

a . Hence ( a
1 )(S −1M) , (0). If ( a

1 )(S −1M) =

S −1(aM) ⊆ (S −1ΓM
a )(S −1M) = S −1(ΓM

a M), then t(aM) ⊆ ΓM
a M for some t ∈ R\LM

a as aM is finitely
generated. This yields the contradiction that t ∈ LM

a . Thus ( a
1 )(S −1M) * (S −1ΓM

a )(S −1M). Now, if S −1I
is an ideal of S −1R such that ( a

1 )(S −1M) = S −1(aM) * (S −1I)(S −1M) = S −1(IM). Then aM * IM.
Hence I ⊆ ΓM

a and so S −1I ⊆ S −1ΓM
a . This shows that S −1ΓM

a is the greatest element in the set of ideals
S −1J such that ( a

1 )(S −1M) * (S −1J)(S −1M). Thus a
1 is an (S −1M)-strongly hollow element of S −1R by

Theorem 3.17. The last part is clear. �

4. A topology on the set Of M-PS-hollow ideals

In [1, 3, 6, 11] some topologies were defined and studied by using strongly irreducible submodules
and ideals. Also, in [2, 6], some topologies were constructed by using strongly hollow submodules
from a lattice theoretical point of view. Motivated by this background, in this section, we define and
study a topology on the set of M-PS-hollow ideals of a ring.

Let M be an R-module. We will denote the set of all M-PS-hollow ideals of R by PS HM(R). For
each ideal I of R, we define the set V psh

M (I) as follows:

V psh
M (I) := {p ∈ PS HM(R) : pM ⊆ IM}

The following Lemma shows that the family {V psh
M (I) : I is an ideal of R} satisfies the axioms of

closed sets for a topology.

Lemma 4.1. The following properties hold for an R-module M.
(1) V psh

M (0) = ∅ and V psh
M (R) = PS HM(R).

(2) V psh
M (I) ∪ V psh

M (J) = V psh
M (I + J) for all ideals I, J of R.

(3) ∩λ∈ΛV psh
M (Iλ) = V psh

M (∩λ∈Λ(IλM : M)) for a family of ideals {Iλ}λ∈Λ of R.

Proof. (1) This is clear by definition.
(2) Let p ∈ V psh

M (I) ∪ V psh
M (J). Then pM ⊆ IM or pM ⊆ JM. This implies that pM ⊆ IM + JM =

(I + J)M. Thus p ∈ V psh
M (I + J) and so V psh

M (I) ∪ V psh
M (J) ⊆ V psh

M (I + J). Now, let p ∈ V psh
M (I + J).
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Then pM ⊆ (I + J)M = IM + JM. Since pM is an M-PS-hollow submodule, either pM ⊆ IM
or pM ⊆ JM. Therefore, p ∈ V psh

M (I) ∪ V psh
M (J) and so V psh

M (I + J) ⊆ V psh
M (I) ∪ V psh

M (J). Thus
V psh

M (I) ∪ V psh
M (J) = V psh

M (I + J).
(3) Let p ∈ ∩λ∈ΛV psh

M (Iλ). Then pM ⊆ IλM for every λ ∈ Λ whence pM ⊆ ∩λ∈Λ(IλM). It follows that
(pM : M) ⊆ (∩λ∈Λ(IλM) : M) = ∩λ∈Λ(IλM : M) whence pM = (pM : M)M ⊆ (∩λ∈Λ(IλM : M)) M.
Thus p ∈ V psh

M (∩λ∈Λ(IλM : M)) and so ∩λ∈ΛV psh
M (Iλ) ⊆ V psh

M (∩λ∈Λ(IλM : M)). To see the reverse
inclusion, take an element p ∈ V psh

M (∩λ∈Λ(IλM : M)). Then pM ⊆ (∩λ∈Λ(IλM : M)) M ⊆ (IλM :
M)M = IλM for every λ ∈ Λ. Thus p ∈ V psh

M (Iλ) for every λ ∈ Λ and so p ∈ ∩λ∈ΛV psh
M (Iλ). Therefore,

V psh
M (∩λ∈Λ(IλM : M)) ⊆ ∩λ∈ΛV psh

M (Iλ). �

Now, we put ζ psh
M (R) := {V psh

M (I) : I is an ideal of R}. By Lemma 4.1, for any R-module M, there
exists a topology, τpsh say, on PS HM(R) having ζ psh

M (R) as the family of all closed sets. The topology
τpsh is called PS H-Zariski topology on PS HM(R). Let Y ⊆ PS HM(R) for an R-module M. We will
denote the sum of all elements in Y by Θ(Y) and the closure of Y in PS HM(R) with respect to PS H-
Zariski topology by Clpsh(Y).

The proof of the following lemma is easily proved by using definitions. So it is left to the reader.

Lemma 4.2. Let M be an R-module and I, J be ideals of R. Then the following hold.
(1) If IM = JM, then V psh

M (I) = V psh
M (J). The converse is also true if I and J are M-PS-hollow

ideals.
(2) V psh

M (I) = V psh
M ((IM : M)).

(3) Let Y ⊆ PS HM(R). Then Y ⊆ V psh
M (I) if and only if Θ(Y)M ⊆ IM.

In the following proposition we determine the closure of a subset of PS HM(R) with respect to
PS H-Zariski topology.

Proposition 4.3. Let M be an R-module and Y ⊆ PS HM(R). Then the following hold.
(1) Clpsh(Y) = V psh

M (Θ(Y)). In particular, Clpsh({p}) = V psh
M (p) for each p ∈ PS HM(R).

(2) If Θ(Y) = R, then Y is dense in PS HM(R).

Proof. (1) Let p ∈ Y . Then p ⊆ Θ(Y) whence pM ⊆ Θ(Y)M and we get that p ∈ V psh
M (Θ(Y)). This

shows that Y ⊆ V psh
M (Θ(Y)). Now, let V psh

M (I) be any closed subset of PS HM(R) with Y ⊆ V psh
M (I)

where I is an ideal of R. Then Θ(Y)M ⊆ IM by Lemma 4.2. Hence for every p ∈ V psh
M (Θ(Y)),

pM ⊆ Θ(Y)M ⊆ IM whence V psh
M (Θ(Y)) ⊆ V psh

M (I). This shows that V psh
M (Θ(Y)) is the smallest closed

subset of PS HM(R) that contains Y . So Clpsh(Y) = V psh
M (Θ(Y)).

(2) This follows from part (1). �

Recall that a topological space X is said to be irreducible if for any decomposition X = A1∪A2 with
closed subsets A1, A2 of X, we have A1 = X or A2 = X. A subset A of X is said to be an irreducible
subspace (subset) if it is irreducible as a subspace of X. In fact, A ⊆ X is irreducible iff for any proper
closed subsets B1, B2 of X, A ⊆ B1 ∪ B2 implies A ⊆ B1 or A ⊆ B2. An irreducible component of a
topological space X is a maximal irreducible subset of X.

Any singleton subset and its closure in a topological space are irreducible. So we obtain the follow-
ing corollary applying Proposition 4.3-(1).

Corollary 4.4. Let M be an R-module and J be an M-PS-hollow ideal of R. Then V psh
M (J) is an

irreducible closed subset of PS HM(R).
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In the following theorem we give a necessary and sufficient condition for Y ⊆ PS HM(R) to be an
irreducible subset of PS HM(R).

Theorem 4.5. Let M be an R-module and Y be a subset of PS HM(R). Then Θ(Y) is an M-PS-hollow
ideal of R if and only if Y is an irreducible subset of PS HM(R). In particular, Θ(PS HM(R)) is an
M-PS-hollow ideal of R if and only if PS HM(R) is an irreducible topological space.

Proof. Suppose that Θ(Y) is an M-PS-hollow ideal of R. Let Y ⊆ Y1 ∪ Y2 where Y1 and Y2 are two
closed subset of PS HM(R). Then Y1 = V psh

M (I) and Y2 = V psh
M (J) for some ideals I, J of R. Hence

Y ⊆ V psh
M (I)∪V psh

M (J) = V psh
M (I + J). By Lemma 4.2, Θ(Y)M ⊆ (I + J)M = IM + JM. Since Θ(Y)M is a

PS-hollow submodule of M, either Θ(Y)M ⊆ IM or Θ(Y)M ⊆ JM. By Lemma 4.2, Y ⊆ V psh
M (I) = Y1 or

Y ⊆ V psh
M (J) = Y2. This yields that Y is an irreducible subset of PS HM(R). Conversely, suppose that Y

is an irreducible subset of PS HM(R). Let Θ(Y)M ⊆ IM+L where I is an ideal of R and L is a submodule
of M. Suppose on the contrary that Θ(Y)M * IM and Θ(Y)M * L. Then Θ(Y)M * (L : M)M and
Lemma 4.2 implies that Y * V psh

M (I) and Y * V psh
M ((L : M)). Let p ∈ Y . Then pM ⊆ Θ(Y)M ⊆ IM + L.

Since pM is a PS-hollow submodule, we have either pM ⊆ IM or pM ⊆ L. So either pM ⊆ IM
or (pM : M)M = pM ⊆ (L : M)M. Thus p ∈ V psh

M (I) or p ∈ V psh
M ((L : M)). This yields that

Y ⊆ V psh
M (I)∪V psh

M ((L : M)) which contradicts with the irreducibility of Y . So Θ(Y) is an M-PS-hollow
ideal of R. �

Let Y be a closed subset of a topological space. An element y ∈ Y is called a generic point of Y if
Y = Cl({y}).

It is well-known that a topological space is a T0-space if and only if the closures of distinct points
are distinct. So a generic point of an irreducible closed subset Y of a topological space is unique if the
topological space is a T0-space.

In the following theorem we determine irreducible closed subsets of PS HM(R) and we give a bijec-
tion from the set of irreducible components of PS HM(R) onto the set of maximal elements of PS HM(R)
when PS HM(R) is a T0-space

Theorem 4.6. Let M be an R-module and Y be a subset of PS HM(R).
(1) Y is an irreducible closed subset of PS HM(R) if and only if Y = V psh

M (p) for some M-PS-hollow
ideal p of R. Thus every irreducible closed subset of PS HM(R) has a generic point.

(2) If PS HM(R) is a T0-space, then the correspondence V psh
M (q) 7−→ q is a bijection from the set of

irreducible components of PS HM(R) onto the set of maximal elements of PS HM(R).

Proof. (1) By Corollary 4.4, Y = V psh
M (q) is an irreducible closed subset of PS HM(R). Conversely, if Y

is an irreducible closed subset of PS HM(R), then Y = V psh
M (I) for some ideal I of R. By Theorem 4.5,

Θ(Y) is an M-PS-hollow ideal of R. Proposition 4.3 implies that Y = V psh
M (Θ(Y)) as desired.

(2) Let Y be an irreducible component of PS HM(R). By part (1), Y is a maximal element of the
set {V psh

M (I) : I ∈ PS HM(R)}. So Y = V psh
M (p) for some p ∈ PS HM(R). If q ∈ PS HM(R) with p ⊆ q,

then V psh
M (p) ⊆ V psh

M (q). By the maximality of V psh
M (p), we get that Clpsh({p}) = V psh

M (p) = V psh
M (q) =

Clpsh({q}). Since PS HM(R) is a T0-space, p = q. Thus p is a maximal element of PS HM(R).
Now, let p be a maximal element of PS HM(R) with V psh

M (p) ⊆ V psh
M (J) for some M-PS-hollow ideal

J of R. Then p ∈ V psh
M (J) and so p ⊆ (JM : M). Since (JM : M) is an M-PS-hollow ideal of R, we get

that p = (JM : M) by the maximality of p. It follows by Lemma 4.2 that V psh
M (J) = V psh

M ((JM : M)) =

V psh
M (p). This shows that V psh

M (p) is an irreducible component of PS HM(R). �

AIMS Mathematics Volume 6, Issue 12, 12986–13003.



13000

Recall that a topological space X is said to be Noetherian if the open subsets of X satisfy ascend-
ing chain condition. This is equivalent to say that the closed subsets of X satisfy descending chain
condition. It is well-known that if X is a Noetherian topological space, then every subspace of X is
quasi-compact.

In the following theorem we determine some cases in which PS HM(R) is a Noetherian space.

Theorem 4.7. Let M be an R-module. In each of the following cases PS HM(R) is a Noetherian
topological space.

(1) R is an Artinian ring.
(2) M is an Artinian R-module.

Proof. (1) Let V psh
M (I1) ⊇ V psh

M (I2) ⊇ ... be a descending chain of closed subsets of PS HM(R) where Ii

is an ideal of R for each i ∈ {1, 2...}. Then Θ(V psh
M (I1)) ⊇ Θ(V psh

M (I2)) ⊇ ... is a descending chain of
ideals of R. By assumption, there exists a positive integer k such that Θ(V psh

M (Ik)) = Θ(V psh
M (Ik+i)) for

each i ∈ {1, 2, ...}. By Proposition 4.3, V psh
M (Ik) = V psh

M (Ik+i) for each i ∈ {1, 2, ...}. Hence PS HM(R) is a
Noetherian space.

(2) Let V psh
M (I1) ⊇ V psh

M (I2) ⊇ ... be a descending chain of closed subsets of PS HM(R) where Ii is
an ideal of R for each i ∈ {1, 2...}. Then Θ(V psh

M (I1))M ⊇ Θ(V psh
M (I2))M ⊇ ... is a descending chain of

submodules of the Artinian module M. So there exists a positive integer k such that Θ(V psh
M (Ik))M =

Θ(V psh
M (Ik+i))M for each i ∈ {1, 2, ...}. By Lemma 4.2, V psh

M (Θ(V psh
M (Ik))) = V psh

M (Θ(V psh
M (Ik+i))) for each

i ∈ {1, 2, ...}. Proposition 4.3 implies that V psh
M (Ik) = V psh

M (Ik+i) for each i ∈ {1, 2, ...}. Hence PS HM(R)
is a Noetherian space. �

A topological space X is said to be a spectral space if X is homeomorphic to S pec(S ), with the
Zariski topology, for some commutative ring S . Spectral spaces were characterized by Hochster [20,
p. 52, Proposition 4] as the topological spaces X which satisfy the following conditions:

(a) X is a T0-space;
(b) X is quasi-compact and has a basis of quasi-compact open subsets;
(c) The family of quasi-compact open subsets of X is closed under finite intersections;
(d) Every irreducible closed subset of X has a generic point.
It is well-known that a Noetherian space is spectral if and only if it is a T0-space and every irre-

ducible closed subset has a generic point. By using this fact, Theorem 4.6 and Theorem 4.7, we get the
following corollary.

Corollary 4.8. Let R be an Artinian ring or M be an Artinian R-module. Then PS HM(R) is a spectral
space if and only if PS HM(R) is a T0-space.

Recall from [7] that an R-module M is called cancellation (resp. restricted cancellation) if IM = JM
(resp. 0 , IM = JM) implies I = J for all ideals I, J of R. In the following proposition we show that
Then PS HM(R) is a T0-space where M is a restricted cancellation R-module.

Proposition 4.9. Let M be a restricted cancellation R-module. Then PS HM(R) is a T0-space.

Proof. It is well-known that a topological space is a T0-space if and only if the closures of distinct
points are distinct. Let Cl({p}) = Cl({q}) for p, q ∈ PS HM(R). Then V psh

M (q) = V psh
M (p) by Proposition

4.3. By Lemma 4.2, we have pM = qM. Since M is restricted cancellation, p = q. Thus PS HM(R) is
a T0-space. �
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Combining Corollary 4.8 and Proposition 4.9, we get the following corollary.

Corollary 4.10. Let M be a restricted cancellation R-module. If R is an Artinian ring or M is an
Artinian R-module, then PS HM(R) is a spectral space.

Let M be an R-module. We will denote the set of all minimal elements of PS HM(R) by
Min(PS HM(R)).

Recall that a topological space is a T1-space if and only if every singleton subset is closed. In the
following proposition we determine when PS HM(R) is a T1-space.

Proposition 4.11. Let M be an R-module. Then PS HM(R) is a T1-space if and only if
Min(PS HM(R)) = PS HM(R).

Proof. Suppose that PS HM(R) is a T1-space. Let q ∈ PS HM(R) with p ⊆ q for some p ∈ PS HM(R).
Then pM ⊆ qM whence p ∈ V psh

M (q) = Clpsh({q}) = {q} by assumption and Proposition 4.3. Thus
p = q and so Min(PS HM(R)) = PS HM(R).

Conversely, suppose that Min(PS HM(R)) = PS HM(R). First note that (IM : M) ∈ PS HM(R)
for every I ∈ PS HM(R). By assumption, we see that I = (IM : M) for every I ∈ PS HM(R). Let
p ∈ PS HM(R). By Proposition 4.3 it is sufficient to show that V psh

M (p) = {p}. Let q ∈ V psh
M (p). Then

qM ⊆ pM whence q = (qM : M) ⊆ (pM : M) = p. We must have q = p by assumption. Thus
V psh

M (p) = {p} and so PS HM(R) is a T1-space. �

Recall that a proper submodule N of an R-module M is said to be completely irreducible if N =

∩i∈INi where {Ni}i∈I is a family of submodules of M, then N = Ni for some i ∈ I. Every submodule of
M is an intersection of completely irreducible submodules of M (see [18]).

Finally, we find a base for PSH-Zariski topology when M is a faithful multiplication module.

Proposition 4.12. Let M be a faithful multiplication R-module. Then the set {PS HM(R)\V psh
M (q) : q is

a completely irreducible ideal of R} is a base for PSH-Zariski topology.

Proof. Let I be an ideal of R. Put X := PS HM(R). There exists a family of completely irreducible
ideals {qi}i∈Λ such that I = ∩i∈Λqi. By using [16, Theorem 1.6], we have X\V psh

M (I) = X\V psh
M (∩i∈Λqi) =

X\V psh
M (((∩i∈Λqi)M : M)) = X\V psh

M ((∩i∈Λ(qiM) : M)) = X\(∩i∈ΛV psh
M (qi)) = ∪i∈Λ(X\V psh

M (qi)). This
completes the proof. �

5. Conclusions

In this study, we introduced the notions of M-strongly hollow and M-PS-hollow ideals where M
is a module over a commutative ring R. We investigated some properties and characterizations of M-
strongly hollow (M-PS-hollow) ideals. Then we constructed a topology on the set of all M-PS-hollow
ideals of a commutative ring R. We investigated when this topological space is irreducible, Noetherian,
T0, T1 and spectral space.
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