Research article

Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order

  • Received: 26 August 2021 Accepted: 12 October 2021 Published: 15 October 2021
  • MSC : 26A33, 34A08, 34B15

  • In this article, we investigate new results of existence and uniqueness for systems of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order and along with new kinds of coupled discrete (multi-points) and fractional integral (Riemann-Liouville) boundary conditions. Our investigation is mainly based on the theorems of Schaefer, Banach, Covitz-Nadler, and nonlinear alternatives for Kakutani. The validity of the obtained results is demonstrated by numerical examples.

    Citation: M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran. Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order[J]. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045

    Related Papers:

  • In this article, we investigate new results of existence and uniqueness for systems of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order and along with new kinds of coupled discrete (multi-points) and fractional integral (Riemann-Liouville) boundary conditions. Our investigation is mainly based on the theorems of Schaefer, Banach, Covitz-Nadler, and nonlinear alternatives for Kakutani. The validity of the obtained results is demonstrated by numerical examples.



    加载中


    [1] A. Hamoud, Existence and uniqueness of solutions for fractional neutral volterra-fredholm integro differential equations, Advances in the Theory of Nonlinear Analysis and its Application, 4 (2020), 321–331. doi: 10.31197/atnaa.799854. doi: 10.31197/atnaa.799854
    [2] M. Subramanian, J. Alzabut, D. Baleanu, M. E. Samei, A. Zada, Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving hadamard derivatives and associated with multi-point boundary conditions, Adv. Differ. Equ., 2021 (2021), 267. doi: 10.1186/s13662-021-03414-9. doi: 10.1186/s13662-021-03414-9
    [3] S. Muthaiah, D. Baleanu, N. G. Thangaraj, Existence and hyers-ulam type stability results for nonlinear coupled system of caputo-hadamard type fractional differential equations, Aims Mathematics, 6 (2021), 168–194. doi: 10.3934/math.2021012. doi: 10.3934/math.2021012
    [4] M. S. Hashemi, Invariant subspaces admitted by fractional differential equations with conformable derivatives, Chaos Soliton. Fract., 107 (2018), 161–169. doi: 10.1016/j.chaos.2018.01.002. doi: 10.1016/j.chaos.2018.01.002
    [5] M. S. Hashemi, A. Atangana, S. Hajikhah, Solving fractional pantograph delay equations by an effective computational method, Math. Comput. Simulat., 177 (2020), 295–305. doi: 10.1016/j.matcom.2020.04.026. doi: 10.1016/j.matcom.2020.04.026
    [6] M. S. Hashemi, M. Inc, D. Baleanu, On fractional kdv-burgers and potential kdv equations: Existence and uniqueness results, Therm. Sci., 23 (2019), S2107–S2117. doi: 10.2298/TSCI190101400H. doi: 10.2298/TSCI190101400H
    [7] M. S. Hashemi, A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative, Chaos Soliton. Fract., 152 (2021), 111367. doi: 10.1016/j.chaos.2021.111367. doi: 10.1016/j.chaos.2021.111367
    [8] S. Salahshour, A. Ahmadian, C. S. Chan, Successive approximation method for caputo q-fractional ivps, Commun. Nonlinear Sci., 24 (2015), 153–158. doi: 10.1016/j.cnsns.2014.12.014. doi: 10.1016/j.cnsns.2014.12.014
    [9] J. Klafter, S. Lim, R. Metzler, Fractional dynamics: recent advances, World Scientific Publishing Company, 2012.
    [10] D. Valério, J. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17 (2014), 552–578. doi: 10.2478/s13540-014-0185-1. doi: 10.2478/s13540-014-0185-1
    [11] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [12] M. S. Hashemi, Some new exact solutions of (2+ 1)-dimensional nonlinear heisenberg ferromagnetic spin chain with the conformable time fractional derivative, Opt. Quant. Electron., 50 (2018), 79. doi: 10.1007/s11082-018-1343-1. doi: 10.1007/s11082-018-1343-1
    [13] M. S. Hashemi, D. Baleanu, Lie symmetry analysis of fractional differential equations, CRC Press, 2020.
    [14] M. Senol, S. Atpinar, Z. Zararsiz, S. Salahshour, A. Ahmadian, Approximate solution of time-fractional fuzzy partial differential equations, Comp. Appl. Math., 38 (2019), 18. doi: 10.1007/s40314-019-0796-6. doi: 10.1007/s40314-019-0796-6
    [15] A. Ahmadian, C. S. Chan, S. Salahshour, V. Vaitheeswaran, Ftfbe: A numerical approximation for fuzzy time-fractional bloch equation, In: 2014 IEEE international conference on fuzzy systems (FUZZ-IEEE), IEEE, 2014,418–423.
    [16] S. Salahshour, A. Ahmadian, S. Abbasbandy, D. Baleanu, M-fractional derivative under interval uncertainty: Theory, properties and applications, Chaos Soliton. Fract., 117 (2018), 84–93. doi: 10.1016/j.chaos.2018.10.002. doi: 10.1016/j.chaos.2018.10.002
    [17] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [18] A. Boutiara, S. Etemad, J. Alzabut, A. Hussain, M. Subramanian, S. Rezapour, On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria, Adv. Differ. Equ., 2021 (2021), 367. doi: 10.1186/s13662-021-03525-3. doi: 10.1186/s13662-021-03525-3
    [19] B. Ahmad, R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput., 339 (2018), 516–534. doi: 10.1016/j.amc.2018.07.025. doi: 10.1016/j.amc.2018.07.025
    [20] M. S. Hashemi, M. Inc, S. Hajikhah, Generalized squared remainder minimization method for solving multi-term fractional differential equations, Nonlinear Anal. Model., 26 (2021), 57–71. doi: 10.15388/namc.2021.26.20560. doi: 10.15388/namc.2021.26.20560
    [21] C. Nuchpong, S. K. Ntouyas, A. Samadi, J. Tariboon, Boundary value problems for hilfer type sequential fractional differential equations and inclusions involving riemann–stieltjes integral multi-strip boundary conditions, Adv. Differ. Equ., 2021 (2021), 268. doi: 10.1186/s13662-021-03424-7. doi: 10.1186/s13662-021-03424-7
    [22] N. Phuangthong, S. K. Ntouyas, J. Tariboon, K. Nonlaopon, Nonlocal sequential boundary value problems for hilfer type fractional integro-differential equations and inclusions, Mathematics, 9 (2021), 615. doi: 10.3390/math9060615. doi: 10.3390/math9060615
    [23] M. Faieghi, S. Kuntanapreeda, H. Delavari, D. Baleanu, LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dyn., 72 (2013), 301–309. doi: 10.1007/s11071-012-0714-6. doi: 10.1007/s11071-012-0714-6
    [24] N. Nyamoradi, M. Javidi, B. Ahmad, Dynamics of sveis epidemic model with distinct incidence, Int. J. Biomath., 8 (2015), 1550076. doi: 10.1142/S179352451550076X. doi: 10.1142/S179352451550076X
    [25] A. Carvalho, C. M. Pinto, A delay fractional order model for the co-infection of malaria and hiv/aids, Int. J. Dynam. Control, 5 (2017), 168–186. doi: 10.1007/s40435-016-0224-3. doi: 10.1007/s40435-016-0224-3
    [26] M. M. Matar, E. S. Abu Skhail, J. Alzabut, On solvability of nonlinear fractional differential systems involving nonlocal initial conditions, Math. Method. Appl. Sci., 44 (2021), 8254–8265. doi: 10.1002/mma.5910. doi: 10.1002/mma.5910
    [27] M. M. Matar, J. Alzabut, J. M. Jonnalagadda, A coupled system of nonlinear caputo–hadamard langevin equations associated with nonperiodic boundary conditions, Math. Method. Appl. Sci., 44 (2021), 2650–2670. doi: 10.1002/mma.6711. doi: 10.1002/mma.6711
    [28] K. S. Cole, Electric conductance of biological systems, In: Cold Spring Harbor symposia on quantitative biology, Cold Spring Harbor Laboratory Press, 1933,107–116.
    [29] V. D. Djordjević, J. Jarić, B. Fabry, J. J. Fredberg, D. Stamenović, Fractional derivatives embody essential features of cell rheological behavior, Annals of biomedical engineering, 31 (2003), 692–699. doi: 10.1114/1.1574026. doi: 10.1114/1.1574026
    [30] L. Wang, M. Y. Li, Mathematical analysis of the global dynamics of a model for hiv infection of cd4+ T cells, Math. Biosci., 200 (2006), 44–57. doi: 10.1016/j.mbs.2005.12.026. doi: 10.1016/j.mbs.2005.12.026
    [31] A. Arafa, S. Rida, M. Khalil, Fractional modeling dynamics of hiv and cd4+ t-cells during primary infection, Nonlinear Biomed. Phys., 6 (2012), 1. doi: 10.1186/1753-4631-6-1. doi: 10.1186/1753-4631-6-1
    [32] B. Ahmad, M. Alghanmi, A. Alsaedi, J. J. Nieto, Existence and uniqueness results for a nonlinear coupled system involving caputo fractional derivatives with a new kind of coupled boundary conditions, Appl. Math. Lett., 116 (2021), 107018. doi: 10.1016/j.aml.2021.107018. doi: 10.1016/j.aml.2021.107018
    [33] S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis: Volume II: Applications, Springer Science & Business Media, 2013.
    [34] K. Deimling, Multivalued differential equations, Walter de Gruyter, 2011.
    [35] H. H. Covitz, S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. doi: 10.1007/BF02771543. doi: 10.1007/BF02771543
    [36] A. Granas, J. Dugundji, Fixed point theory, Springer, 2013.
    [37] Y. Zhou, J. R. Wang, L. Zhang, Basic theory of fractional differential equations, WSPC, 2016.
    [38] A. Losta, Z. Opial, Application of the kakutani-ky-fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map, \it Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys, 13 (1965), 781–786.
    [39] M. Kisielewicz, Stochastic differential inclusions and applications, Springer, 2013.
    [40] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Springer, 2006.
    [41] R. Vadivel, P. Hammachukiattikul, N. Gunasekaran, R. Saravanakumar, H. Dutta, Strict dissipativity synchronization for delayed static neural networks: An event-triggered scheme, Chaos Soliton. Fract., 150 (2021), 111212. doi: 10.1016/j.chaos.2021.111212. doi: 10.1016/j.chaos.2021.111212
    [42] R. Anbuvithya, S. D. Sri, R. Vadivel, N. Gunasekaran, P. Hammachukiattikul, Extended dissipativity and non-fragile synchronization for recurrent neural networks with multiple time-varying delays via sampled-data control, IEEE Access, 9 (2021), 31454–31466. doi: 10.1109/ACCESS.2021.3060044. doi: 10.1109/ACCESS.2021.3060044
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2612) PDF downloads(126) Cited by(23)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog