In this paper, optimal bounds for the sine and hyperbolic tangent means by arithmetic and centroidal means in exponential type are established using the monotone form of L'Hospital's rule and the criterion for the monotonicity of the quotient of power series.
Citation: Ling Zhu, Branko Malešević. Optimal bounds for the sine and hyperbolic tangent means by arithmetic and centroidal means in exponential type[J]. AIMS Mathematics, 2021, 6(12): 13024-13040. doi: 10.3934/math.2021753
In this paper, optimal bounds for the sine and hyperbolic tangent means by arithmetic and centroidal means in exponential type are established using the monotone form of L'Hospital's rule and the criterion for the monotonicity of the quotient of power series.
[1] | P. Kahlig, J. Matkowski, Decomposition of homogeneous means and construction of some metric spaces, Math. Inequal. Appl., 1 (1998), 463–480. |
[2] | A. Witkowski, On Seiffert-like means, J. Math. Inequal., 9 (2015), 1071–1092. |
[3] | Y. Q. Song, W. M. Qian, Y. M. Chu, Optimal bounds for Neuman mean using arithmetic and centroidal means, J. Funct. Spaces, 2016 (2016), 5131907. |
[4] | B. Wang, C. L. Luo, S. H. Li, Y. M. Chu, Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 7. doi: 10.1007/s13398-019-00734-0 |
[5] | W. F. Xia, Y. M. Chu, Optimal inequalities between Neuman-Sándor, centroidal and harmonic means, J. Math. Inequal., 7 (2013), 593–600. |
[6] | X. H. He, W. M. Qian, H. Z. Xu, Y. M. Chu, Sharp power mean bounds for two Sándor-Yang means, RACSAM, 113 (2019), 2627–2638. doi: 10.1007/s13398-019-00643-2 |
[7] | Z. Y. He, M. K. Wang, Y. P. Jiang, Y. M. Chu, Bounds for the perimeter of an ellipse in terms of power means, J. Math. Inequal., 14 (2020), 887–899. |
[8] | W. M. Qian, Z. Y. He, H. W. Zhang, Y. M. Chu, Sharp bounds for Neuman means in terms of two parameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 168. doi: 10.1186/s13660-019-2124-5 |
[9] | M. Nowicka, A. Witkowski, Optimal bounds for the tangent and hyperbolic sine means IV, J. Math. Inequal., 14 (2020), 23–33. |
[10] | L. Zhu, Optimal bounds for two Seiffert-like means in exponential type, J. Math. Anal. Appl., 505 (2022), 125475. doi: 10.1016/j.jmaa.2021.125475 |
[11] | G. D. Anderson, M. K. Vamanamurthy, M.Vuorinen, Inequalities for quasiconformal mappings in space, Pac. J. Math., 160 (1993), 1–18. doi: 10.2140/pjm.1993.160.1 |
[12] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, New York: John Wiley & Sons, 1997. |
[13] | M. Biernacki, J. Krzyz, On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Sklodowska, 9 (1955), 134–145. |
[14] | A. Jeffrey, Handbook of mathematical formulas and integrals, 3 Eds, San Diego: Elsevier B.V., 2004. |
[15] | M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Washington: U.S. Government Printing Office, 1972. |
[16] | C. D'aniello, On some inequalities for the Bernoulli numbers, Rend. Circ. Mat. Palermo, 43 (1994), 329–332. doi: 10.1007/BF02844246 |
[17] | H. Alzer, Sharp bounds for the Bernoulli Numbers, Arch. Math., 74 (2000), 207–211. doi: 10.1007/s000130050432 |
[18] | F. Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, J. Comput. Appl. Math., 351 (2019), 1–5. |
[19] | Z. H. Yang, J. F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math., 364 (2020), 112359. doi: 10.1016/j.cam.2019.112359 |
[20] | L. Zhu, New bounds for the ratio of two adjacent even-indexed Bernoulli numbers, RACSAM, 114 (2020), 83. doi: 10.1007/s13398-020-00814-6 |