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1. Introduction

In 1998, Kahlig and Matkowski [1] proved in particular that every homogeneous bivariable mean
M in (0, o) can be represented in the form

M(x,y) = A(x,Y) fra (i . i ) :

where A is the arithmetic mean and fya: (=1,1) — (0,2) is a unique single variable function (with
the graph laying in a set of a butterfly shape), called an A-index of M.
In this paper we consider Seiffert function f : (0, 1) — R which fulfils the following condition
t
T+1
According to the results of Witkowski [2] we introduce the mean M of the form

t
< f@ < —

[x=
oy X F s

M;(x, y) :{ 21(55) (1.1)

X X =Y.
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In this paper a mean M, : R2 — R is the function that is symmetric, positively homogeneous and
internal in sense [2]. Basic result of Witkowski is correspondence between a mean M, and Seiffert
function f of My is given by the following formula

t

TO=SLa—ni+n (1.2
where
po XA (1.3)
x+y

Therefore, f and M, form a one-to-one correspondence via (1.1) and (1.2). For this reason, in the
following we can rewrite f =: fu.

Throughout this article, we say x # y, that is, ¢ € (0, 1). For convenience, we note that M; < M,
means M, (x,y) < Ma(x,y) holds for two means M; and M, with x # y. Then there is a fact that the
inequality fu, () > fwm,(?) holds if and only if M; < M,. That is to say,

! < ! — M, <M (1.4)
vy : ” .
The above relationship (1.4) inspires us to ask a question: Can we transform the means inequality
problem into the reciprocal inequality problem of the corresponding Seiffert functions? Witkowski [2]
answers this question from the perspective of one-to-one correspondence. We find that these two kinds
of inequalities are equivalent in similar linear inequalities. We describe this result in Lemma 2.1 as a
support of this paper.

As we know, the study of inequalities for mean values has always been a hot topic in the field of
inequalities. For example, two common means can be used to define some new means. The recent
success in this respect can be seen in references [3—8]. In [2], Witkowski introduced the following two
new means, one called sine mean

[x—yl
—n X FY
Min(x, ) = { 2sn((5) , (1.5)
X xX=y
and the other called hyperbolic tangent mean
[x—yl
o X FY
Munn(x, y) = { 2unh(55) . (1.6)
X xX=y

Recently, Nowicka and Witkowski [9] determined various optimal bounds for the Mg, (x,y) and
M.nn(x, y) by the arithmetic mean A(x,y) = (x + y)/2 and centroidal mean

227+ xy+y?

Ce(X,y)Z 3 X+y

as follows:

Proposition 1.1. The double inequality

(1-a)A+aC, <M, <(1-pA +pC,
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holds if and only if @ < 1/2 and 8 > (3/sin 1) — 3 = 0.5652.
Proposition 1.2. The double inequality

(1 - a’)A + a'Ce < M < (1 _ﬁ)A +ﬁC€

holds if and only if @ < (3/tanh 1) —3 = 0.9391 and 8 > 1.
Proposition 1.3. The double inequality

(1-a)C' + oA <M < (1 -pB)C;' +pA™!

holds if and only if @ < 4sin1 — 3 = 0.3659 and 8 > 1/2.
Proposition 1.4. The double inequality

(1-a)C,' +aA™' <M} <(1-p)C,' +pA™!

al

holds if and only if @ <0 and 8 > 4tanh 1 — 3 = 0.0464.
Proposition 1.5. The double inequality

(1-a)A% +aC? < M2 < (1 -p)A* +pC2

sin

holds if and only if @ < 1/2 and 8 > (9 cot? 1) /7 = 0.5301.
Proposition 1.6. The double inequality

(1-a)A? +aC? < M2, < (1-pB)A* +BC?

tanh

holds if and only if @ < (9 (coth® 1 = 1)) /7 ~ 0.9309 and 5 > 1.
Proposition 1.7. The double inequality

(1-a)C% +aA2 <MZ < (1 - B)C;> + A~

holds if and only if @ < (16 sin’ 1 - 9) /7 ~ 0.3327 and 8 > 1/2.
Proposition 1.8. The double inequality

(1-a)C2+aA2 < M2 <(1-pC,% +pA™?

holds if and only if @ < 0 and 8 > (16tanh2 1- 9) /7 = 0.0401.

In essence, the above results are how the two new means Mg, and My,,, are expressed linearly,
harmoniously, squarely, and harmoniously in square by the two classical means C,(x,y) and A(x, y).
In this paper, we study the following two-sided inequalities in exponential form for nonzero number
pER

(1-a,)A? +a,Ce’ < M. <(1-p,)A"+p,Ce’, (1.7)
(1-2,)A? +2,Ce’ < M < (1—p,)A” +p,Ce” (1.8)

tanh
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in order to reach a broader conclusion including all the above properties. The main conclusions of this
paper are as follows:

Theorem 1.1. Let x,y > 0, x # y, p # 0 and

s 3cos2+sin2+1

= ~ 4.588.
P = 3sin2 —cos2-3
Then the following are considered.
(i) If p > p*, the double inequality
(1-a,A” +a,Ce’ <M’ < (1-p,)A"+p,Ce’ (1.9)

holds if and only if @, < 37 (1 —sin” 1) / [(sin” 1) (4" —3P)] and 8, > 1/2.
(1) If 0 < p < 12/5, the double inequality

(1 -a,)A" +a,Ce’ <M”

sin

< (1-B,)A? +B,Ce” (1.10)

holds if and only if @, < 1/2 and 8, > 37 (1 —sin” 1) / [(sin” 1) (47 — 37)].
(ii1) If p < 0, the double inequality

(1 -pB,A" +,8pCep < Mfin <1 -apA?f+ apCep (1.11)
holds if and only if @, < 1/2 and 8, > 37 (1 —sin” 1) / [(sin” 1) (47 — 37)].
Theorem 1.2. Let x,y > 0, x # y, p # 0 and

16 cosh2 — 3 cosh4 +4sinh?2 + 3
cosh4 — 12sinh2 + 15

LS

P = ~ —3.4776.

Then the following are considered:
(i) If p > 0, the double inequality

(1 - 2,)A” + 2,Ce? <M < (1 - u,)A” + 1, Ce? (1.12)

holds if and only if 4, < ((coth1)” = 1) / ((4/3)” = 1) and u,, > 1.
) If pr < p <0,

(1 — AP + p,1,Ce” < MP

tanh

<(1-2,)A?” + 2,Ce” (1.13)
holds if and only if 4, < ((coth1)” = 1)/ ((4/3)” = 1) and u,, > 1.
2. Lemmas

We first introduce a theoretical support of this paper.

Lemma 2.1. ( [10] ) Let K(x,y),R(x,y), and N(x,y) be three means with two positive distinct
parameters x and y; fk(?), fr(t), and fx(f) be the corresponding Seiffert functions of the former,
P, 1,601,605, p € R, and p # 0. Then

AIMS Mathematics Volume 6, Issue 12, 13024—-13040.
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HKP(x,y) + N (xy) < RP(xy) <6, K7(x,y) + .N"(x, y) 2.1
—
) 9 1 0 0
< R (2.2)
k@ RO frR@® fK(r) fN(t)
It must be mentioned that the key steps to prove the above results are following:
2 2 2 2
M (u,v) = Mf(ﬁ g ) :/IM,«( =2 ):/le(l —n1+1)
‘ X+y x+y Ax+y x+y
t
= 1—, (2.3)
(@)
where
=S 150
2%, <x<Yy, > 0.
V= A;"y
and0 <7 <1,
y—Xx
t= .
X+y

In order to prove the main conclusions, we shall introduce some very suitable methods which are
called the monotone form of L’Hospital’s rule (see Lemma 2.2) and the criterion for the monotonicity
of the quotient of power series (see Lemma 2.3).

Lemma 2.2. ([11,12] ) For —co < a < b < oo, let f,g : [a,b] — R be continuous functions that are
differentiable on (a, b), with f (a) = g(a) = 0 or f(b) = g(b) = 0. Assume that g’(¢) # O for each x in
(a,b). If f’/g’ is increasing (decreasing) on (a, b), then so is f/g.

Lemma 2.3. ([13]) Leta, and b, (n = 0,1,2,- - -) be real numbers, and let the power series A(x) =
Yo anx" and B(x) = Y7, b,x" be convergent for |x| < R (R < 400). If b, >0forn=0,1,2,---, and
if &, = a,/b, is strictly increasing ( or decreasing ) forn = 0, 1,2, - -, then the function A(x)/B(x) is
strictly increasing ( or decreasing ) on (0, R) (R < +00).

Lemma 2.4. ( [14,15] ) Let By, be the even-indexed Bernoulli numbers. Then we have the following
power series expansions

1 > 22n -
cotx = i Z; 2 )‘I W0 < x| <, 2.4)
1 22"(2n - 1
o csc’x = —(cotx) = < + Z Ez”)’ )|Bz,,|x2"-2, 0<xl < (2.5)

Lemma 2.5. ( [16-20] ) Let B,, the even-indexed Bernoulli numbers, n = 1,2, .... Then

2271 - 12n+2)2n+1) Byl  2-1 2n+2)2n+ D
22+l _ n? |Ba| 2772 =1 s
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Lemma 2.6. Let /,(¢) be defined by
s1(2)
L) =—:,
1(0) e

where

62 +21* — 12sin’t — 23 cos tsint + 6¢cos £ sin ¢

s1(1)

sin’ ¢ ’
82sin’t + 2r*sin® 1 — 62 — 2r* — 6sin’ 1 + 12t costsin ¢

ri(r)

sin’ ¢
Then the double inequality

12 o Jc0s2+sin2+1
?<ll(t)<p _3sin2—0052—3~4'588 (2.6)
holds for all ¢+ € (0, 1), where the constants 12/5 and (3cos2 +sin2+1)/(3sin2 —-cos2 —3) =~ 4.

588 are the best possible in (2.6).

Proof. Since

1 nO
L s
and
872 sin® 1 + 2t* sin®t — 612 — 2t* — 6sin’ ¢ + 12t cos ¢ sin ¢
rl(t) = .2
Nl
1 1 t
= 87 -2'—— - 6—; Lot 12 g
sin~t SNt sint
I = 2”2n-1) I w—2”2n-1)
= 82 -2"=+ ) T B, |7 | -6 |= + Y T——Z|B, |r*"?
[rz Z; (2n)! 1Bl 72 Z; (2n)! 1Bl
1 o 22n
214 + 121 - - By, | -6
[r ;(2;1)!' 2
2, w[22'@2n-3) 6-22(2n+ 1) )
= A | By o+ ———— LBy ||
3 n=3[ @n—2yn P ot P
=: Zantzn,
n=2
where
2
a = §5
22125 — 3) 6-22(2n+ 1)
w = | m———— Byl + ————— " Byl|, n=3,4,...,
. [ @n—2y Pu T N
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s51(0)

where
b,
b,
Setting
we have

612 + 21* — 12sin’ 1 — 23 cos tsin 7 + 6¢ cos £ sin ¢
sin’ ¢
1 t t
67— + 2 —— + 61— — 28 _ 12
s’ ¢t sm” ¢ sin ¢ s ¢
1 22”(211 -1) 1 = 22”(211 -1
61> — By, A2 w2 = + — B>y, 22
LZ ;; Qmy Bl 72 Z; amr /Bl
had 22'1 1 > 22n
+6¢| - — By, [P =283 |- - By, | =12
[ Zian P! } L Gt B!

12- 22" (n - D on 12+
Z ] Z By 1
= (@) (2n )'
12-2"(n—1) (n— 1) 2n
|BZn|l2n | 2n—2|t2n
; (2n)! Z —2)!
f:wiﬂm—D||+M—na%l 1s
pon Pl t g gy B
84 > [12 - 22"(n—1) (n—l) 22n
5 B n B — n—
anth’
n=2
8
-5
12-2"(n—1) (n—1)-2%
(2—)!| ol + mlBZn—2| >0,n=3,4,....
qn = Z_:, n= 2 3
- 2. 0.416 67
q> = o= ,
2n—1 n— A2n .
_ - (Zn(—22)!3)|B n 2| + 62(2(3)v+1)|32n|
I = TTheeon B =D o ,n=3,4,....
G 1Bl + 55 |1 Ban-2

Here we prove that the sequence {g,},>» decreases monotonously. Obviously, g, > 0 > g3. We shall

prove that for n > 3,

AIMS Mathematics
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dn > qpny1 &

22 '2n-3 6:2"(2n+1 221201 6-2"2(2n+3
(Zn(—g)! )|B2n—2| + (2(,,;+ )|B2n| (z(n)f'l )|32n| + ﬁ|B2n+2l
T 1222Gi-1) B (-D2" p > - 22y a2 —
@n)! |Baa| + (2n=2)! |Bon-al @n+2)! 1P2n+2 @yl 1P2n
221-1(2p-3) 6:221(2n+1) 2211 (2p—1) 622"2(2n+3)
(zn_g)! |B2n—2| + (z—n)nle2n| (Zn)r!l |BZn| + WlBZYHﬂ
12,22;1 -1 -1 ,22n 12.22n+2 _22n+2
(Zn()n! 1Bl + (?Zn—)Z)! |B2-a Gnean [Bansal + 555 1Bl
that is,
2 |Ban—2| N 24(4n—-3)  |Baus2l|Bon-2l S 24(4n-1) 864 [Banal
Cm)!(2n —-2)! |By| (2n-2)!2n+2)! |Byl|Bal

+ . (2.7
S E I
By Lemma 2.5 we have

2 |B2y-2| N 24(4n—=3)  |Baus2llBa-al
Cm!'2n=2)! |By|l  (2n-=2)!2n+2)! |BallByl
2 22— 7’
Q! (2n - 212272~ 1 2n)2n - 1)
U@En-3) 2 _1@n+2)2n+1) 22 -1
2n—-2)!2n +2)!1 22+l — ] 2 222 — 1 2n)2n - 1)

_ o 2ol 24@n-3)2 o1 27|
T Qml@n)!122 =1 2n)! Qn)! 22— 1222 - 1

and
24(4n-1) N 864 | Baysal
(2n)!2 2n)!' 2n+2)! |By,l
24(4n-1) 864 27— 1 2n+2)2n+1)

QM2 )l @n+2) 27—
M@n-1) 864 2 -1 1
e emlen 2 i

So we can complete the prove (2.7) when proving

2

27’ 220 —1  24(@4n-3)2"1—1 22—

.\ _24¢n-1) 864 22— 1
Q) (2n)!1 2272 =1 " 2n)!l 2n)! 220+1 — [ 2202 ]

QI enlem 21

or
2n? (2 - 1) P R LT 22— 1 864
-2 _ +24(4n - 3) 22+l _ 1 92n-2 _ | >24(4n—1)+ n+2 _ | g2
In fact,
AIMS Mathematics

Volume 6, Issue 12, 13024-13040.



13032

27 (2~ 1) o2l ] 27— 1 864
-2 _ +24 (4n - 3) 2+l _ 1922 _ | [24 (4n—1) + 2n+2 _ 1?]

3 8H(n)

o2 (2202 — 1) (227 — 4) (22241 — 1)’
where

H(n) = 8-2%(x+3)(m=3)(n” +3) +2- 2" (727°n + 60n* - Tn* + 594)
=27 (3670 + 1237° — Tn* + 1404) + (24n° — n* + 432) > 0

for all n > 3.

So the sequence {g,},>» decreases monotonously. By Lemma 2.3 we obtain that r(¢)/s(¢) is
decreasing on (0, 1), which means that the function /; (¢) is increasing on (0, 1). In view of
3cos2+sin2+1

12
lim [, (f) = — and lim [, (¢) = p* = ~ 4.588,
ti%}'l() 5 an zglrll() p 3sin2—-cos2 -3

the proof of this lemma is complete. O

Lemma 2.7. Let [,(¢) be defined by

3 cosh4t — 121 cosh 2t — 4t* cosh 2¢ + 2¢> sinh 2t — 6¢sinh 2¢ — 3 B(?)

L) =2- =:2—2 0<t< o0,
2(0) 2 cosh 4t — 3 cosh 4t + 24t sinh 2¢ — 257> — 8t* + 3 A(1) 0
where
A(f) = 1> cosh4t — 3 cosh4r+ 24t sinh 2t — 25¢% — 8¢* + 3,
B(r) = 3cosh4r— 127 cosh 2t — 4¢* cosh 2¢ + 2¢° sinh 2¢ — 6¢ sinh 27 — 3.

Then /,(¢) 1s strictly decreasing on (0, co).
Proof. Let’s take the power series expansions

k2n+l

o & an
inhkt = Yy ——~"! coshkr= Y ——¢"
o Z; Qu+nt Z; 2n)!

into A(?) and B(t), and get

(o)

A(t) — Z Cnt2n+2, B(t) — Z dnt2n+2,
n=2

n=2
where

c; = 0,

2(3n + 2% — 23)22" +48(2n + 2)
¢, = 27 n=3,4,...,
(2n +2)!

AIMS Mathematics Volume 6, Issue 12, 13024—-13040.
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48-22”—8(n+1)(5n—n2+2n3+6)
d, = 2" n=2,3,...,
2n +2)!

Setting
¢, 48+ 1)+2%(3n+2n% - 23)

"_d_n:4(6-22”—11n—4n2—n3—2n4—6)’

Here we prove that the sequence {k,},>> decreases monotonously. Obviously, k, = 0 < k3. For n > 3,

n=273,...,

ky < kpu
—
48 (n+ 1)+ 2% (3n + 20> - 23)
4(6-2°"—11n—4n*> —n3 - 2n* - 6)
48 (n+2)+ 222 (3(n+ 1)+ 2(n + 1)* - 23)

<
4(6-222 11 (n+ 1) =4 (n+ 1’ = (n+ 1)’ =2(n + 1)* - 6)
—
48 (n + 1) + 2% (3n + 20> - 23)
6-22"—1ln—4n*-n*-2n* -6
48n + 96 + 222 (Tn + 2n* - 18)
<

6 - 2242 —30n — 1912 — 9n® — 2n* — 24

follows from A(n) > O for all n > 2, where

(487 + 96 + 272 (Tn + 2n” - 18)) (6. 2% = 11n — 4n” — n* - 2n* - 6)
—(48.(n+ 1) + 22" (3n + 207 - 23)) (6 - 22 = 30n — 1917 — 9n® — 2n* — 24)
= 24-2"(4n+5) - 2™ (858n +367n% + 2181 — 103n* + 40n° + 12n° + 696)

+1248n + 1440n* + 1056n° + 288n* + 576
= 27 [j(n)2*" - i(m)| + w(n)

A(n)

with
j(n) = 24¢4n+5),
i(n) = 858n+367n>+218n° — 103n* + 40n° + 121° + 696,
w(n) = 1248n + 1440n* + 1056n° + 288n* + 576 > 0.

We have that A(2) = 5376 > 0 and shall prove that

jm2* —i(n) > 0=

LI % (2.8)

holds for all n > 3. Now we use mathematical induction to prove (2.8). When n = 3, the left-hand side
and right-hand side of (2.8) are 2° = 64 and i(3)/j(3) = 941/17 = 55.353, which implies (2.8) holds

AIMS Mathematics Volume 6, Issue 12, 13024—-13040.
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for n = 3. Assuming that (2.8) holds for n = m, that is,

itm)

PRIy
J(m)

(2.9)

Next, we prove that (2.8) is valid for n = m + 1. By (2.9) we have

22m+l) _ 4 o2m 4i(m)
Jjm)’
in order to complete the proof of (2.8) it suffices to show that
i(m) S im+1)
Jm) — jim+1)

> 4i(m) jm + 1) — i(m + 1) j(m) > 0.

In fact,
4i(m) j(m + 1) — i(m + 1) j(m)
= 17280m” +90720m® — 60 000m> — 97 176m* + 1169 232m> + 2266 104m>
+3581 136m + 2154 816
= 146337408 + 234401 616 (m — 3) + 189746 328 (m — 3)* + 92 580720 (m — 3)°
+27579 624 (m — 3)* + 4838 880 (m — 3)° + 453 600 (m — 3)° + 17280 (m — 3)’
> 0

for m > 3 due to the coefficients of the power square of (m — 1) are positive.

By Lemma 2.3 we get that A(¢)/ B(t) is strictly increasing on (0, c0) . So the function /;(x) is strictly
decreasing on (0, o).

The proof of Lemma 2.7 is complete. O

3. Proofs of main results

Via (1.3) and (1.2) we can obtain

A =1,
3t
) = ,
Je.t) 3+ 172
fm,, (1) = sint,
M, (1) = tanht
Then by Lemma 2.1 and (2.3) we have
1\’ 1\?
< —MZ“_AP<B = a, < m) _<;) <B
@ S Cer_Ar “PP T (Y -y
3t t

MY — AP L) (1Y
A, < %<yp<:>ﬂp<%<up
3t t

AIMS Mathematics Volume 6, Issue 12, 13024—-13040.
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So we turn to the proof of the following two theorems.
Theorem 3.1. Letz € (0, 1) and

s 3cos2+sin2+1

= ~ 4.588.
3sin2 —cos2 -3

p

Then,
(i) if p > p*, the double inequality

1\ 1\P
0
p P P
(57) - ()
holds if and only if @, < 37 (1 —sin” 1) / [(sin” 1) (4” — 37)] and B, > 1/2;
(i) if 0 # p < 12/5 = 2.4 and p # 0 the double inequality

p p
(57) - ()
holds if and only if @, < 1/2 and 8 > 37 (1 —sin” 1) / [(sin” 1) (47 — 37)].
Theorem 3.2. Let ¢ € (0, 1) and

16 cosh2 — 3 cosh4 +4sinh?2 + 3
cosh4 — 12sinh2 + 15

If 0 # p > —3.477 6, the double inequality

<B,

*

p:

() ()
-0

holds if and only if 4, < ((coth1)” — 1) /((4/3)” — 1) and u,, > 1.

A, <

3.1. The proof of Theorem 3.1

Let
Y (1) (=Y =1
ro - S
() -() (B) -1
£ _ f@0 - f0")
g(n g —g0*)’
where
r o\
fo = (=) -1,
2\P
o) = (3?) 1

=~ =3.4776.

3.1

(3.2)

(3.3)

AIMS Mathematics Volume 6, Issue 12, 13024—-13040.
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Then
t \P!
fl@ = 'pz (sint—tcost)(_—) ,
sin” ¢ sint
) 2(1\V7 e
g0 = 3|3 pt(F+3)
fl( 37 1 . t Pl
== t—tcost) | —————|
g 2 tsinzt(sm cos?) (2 + 3)sint
and

(f'(f)), 3 l( 3t )p ri (1) [Sl(l)_ ]
¢0) ~ a\Ginn (@2 +3)) BsinZe|n@
1

3 P
= 4( d ) N0 1w - pl,

(sint) (l‘2 + 3) Asin’t

where the three functions s;(¢), r1(¢), and /;(¢) are shown in Lemma 2.6.
By Lemma 2.6 we can obtain the following results:
(a) When p > maxc,1)/1(r) =: p* = (3cos2 +sin2+ 1)/ (3sin2 —cos2 — 3) = 4. 588,

(f’(t))’ <0 '@
g () g (1)

this leads to F(¢) = f(¢)/g(¢) is decreasing on (0, 1) by Lemma 2.1. In view of

is decreasing on (0, 1),

37 (1 —sin” 1)

(sin” 1) (47 — 37)’ G4

1
F(O") =5, F(IN) =

we have that (3.1) holds.
(b) When 0 # p < 12/5 = min,e(o,l) [ (f),

(f(t)) 50 IO
g'(1) g' (1)
this leads to F(¢) = f(t)/g(¢) is increasing on (0, 1) by Lemma 2.2. In view of (3.4) we have that (3.2)

holds.
The proof of Theorem 3.1 is complete.

is increasing on (0, 1),

3.2. The proof of Theorem 3.2
Let

(tariht)p -1

(5

() - ()
() - ()

w(r)  u(r) — u(0")
v(r)  v(t) =)

G()
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Then
’ 14 -l 2
H = ttanh“ ¢ + tanht —¢),
w(® tanh? ¢ (tanh t) ( an an )
2 (243
"ty = =pt ,
V(1) 3P ( 3 )
W(f) _3ttanh’f+tanhr — 1 3t -
V() 2 ftanh? ¢ (2 +3)tanhz|
and
w@®\ 1] 3rcoshr |’ A(1) , 2B®)
V(1) B 16 | (3 + #2)sinh7| £ cosh? fsinh® ¢ A(?)

1
16

[p+L(0)],

3tcosht ]p At

(3+1*)sinht| £3cosh®tsinh?¢
where the three functions A(¢), B(t), and /,(¢) are shown in Lemma 2.7. By Lemma 2.7 we see that /,(x)
is strictly decreasing on (0, 1). Since

lim ,(f) = oo,

t—0*
16 cosh2 — 3 cosh4 + 4sinh2 + 3

cosh4 — 12sinh2 + 15

lil}l (1) =: ps = 3.4776,
t—1-

we obtain the following result:
When p > max,c.1) {(—L()} = —ps =: p* = =3.4776,

W (t)\ u(t) . _
(v’(t)) <0= V) is decreasing on (0, 1),

this leads to G(¢) = u(t)/v(¢) is decreasing on (0, 1) by Lemma 2.2. Since
Cos. p
() -

G(17) < G(1) < G(0™),

GO0") =1,G(17) =

we have

which completes the proof of Theorem 3.2.

4. Corollaries of main results and remarks

Remark 4.1. Letting p = 1,-1,2,-2 in Theorems 1.1 and 1.2 respectively, one can obtain
Propositions 1.1-1.8.

From Theorems 1.1 and 1.2, we can also get the following important conclusions:
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Corollary 4.1. Let x,y > 0, x # y, and

3cos2+sin2+1
* = =~ 4.588,
p 3sin2—-cos2 -3
3r* (1 —sin”* 1)
a = - ~ 0.44025,
(sinp 1) (4r* — 3r%)

1
X
Then the double inequality
(1 - A" +aCe”" <M’ < (1 -B)A" +BCe" (4.1)

holds, where the constants @ and 3 are the best possible in (4.1).

Corollary 4.2. Let x,y > 0, x # y, and

g = 1
= 5
3125 (1 - sin"° 1)
J =~ 0.51603.
(Sin12/5 1) (412/5 — 312/5)
Then the double inequality
(1-0)AP +0Ce"™” <M < (1 - HA? +9Ce™ 4.2)

holds, where the constants 6 and ¢} are the best possible in (4.2).

Corollary 4.3. Let x,y > 0, x # y, and
16 cosh2 —3cosh4 +4sinh2 + 3

. ~ —3.4776,
p coshd — 12sinh2 + 15
th1)” -1
g o= oD =1 606813,
@/3)7 -1
u = 1.

Then the double inequality
(1 — wA” + uCe” < M?.

tanh

< (1= DA” + 1Ce” (4.3)
holds, where the constants A and u are the best possible in (4.3).

5. Conclusions

In this paper, we have studied exponential type inequalities for Mg, and My, in term of A and Ce
for nonzero number p € R:

(1 —a,)A? +a,Ce’ < M’ < (1-B,)A” +B,Ce’,

sin
(1-2,)A” +2,Ce? < M’ < (1—pu,)A? +p,Ce?,
obtained a lot of interesting conclusions which include the ones of the previous similar literature. In
fact, we can consider similar inequalities for dual means of the two means Mg;, and My,,,, and we can

replace A and Ce by other famous means. Therefore, the content of this research is very extensive.
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