Research article

Mean chain transitivity and almost mean shadowing property of iterated function systems

  • Received: 03 May 2024 Revised: 18 June 2024 Accepted: 21 June 2024 Published: 27 June 2024
  • MSC : 37B65, 37B99, 26A18

  • In this paper, we introduce the notions of mean chain transitivity, mean chain mixing, totally mean chain transitivity, and almost mean shadowing property to iterated function systems (IFS). We study the interrelations of these notions. We prove that an iterated function system is chain transitive if one of the constituent maps is surjective, and it has almost mean shadowing property.

    Citation: Thiyam Thadoi Devi, Khundrakpam Binod Mangang, Sonika Akoijam, Lalhmangaihzuala, Phinao Ramwungzan, Jay Prakash Singh. Mean chain transitivity and almost mean shadowing property of iterated function systems[J]. AIMS Mathematics, 2024, 9(8): 20811-20825. doi: 10.3934/math.20241012

    Related Papers:

  • In this paper, we introduce the notions of mean chain transitivity, mean chain mixing, totally mean chain transitivity, and almost mean shadowing property to iterated function systems (IFS). We study the interrelations of these notions. We prove that an iterated function system is chain transitive if one of the constituent maps is surjective, and it has almost mean shadowing property.


    加载中


    [1] A. Allison, D. Abbott, Control systems with stochastic feedback, Chaos, 11 (2001), 715–724. https://doi.org/10.1063/1.1397769 doi: 10.1063/1.1397769
    [2] J. M. R. Parrondo, P. G. Harmer, D. Abbott, New paradoxical games based on Brownian ratchets, Phys. Rev. Lett., 85 (2000), 5226. https://doi.org/10.1103/PhysRevLett.85.5226 doi: 10.1103/PhysRevLett.85.5226
    [3] A. Z. Bahabadi, Shadowing and average shadowing properties of for iterated function systems, Georgian Math. J., 22 (2015), 179–184. https://doi.org/10.1515/gmj-2015-0008 doi: 10.1515/gmj-2015-0008
    [4] R. Devaney, An introduction to chaotic dynamical systems, 2 Eds., CRC Press, 2003. https://doi.org/10.4324/9780429502309
    [5] T. Y. Li, J. Yorke, Period three implies chaos, Amer. Math. Mon., 82 (1975), 985–992. https://doi.org/10.2307/2318254
    [6] E. T. Whittaker, D. Birkhoff's collected papers, Nature, 167 (1951), 250–251. https://doi.org/10.1038/167250a0 doi: 10.1038/167250a0
    [7] W. H. Gottschalk, G. A. Hedlund, Topological dynamics, American Mathematical Society Colloquium Publications, 1995.
    [8] K. E. Petersen, Ergodic Theory, Cambridge University Press, 1983. https://doi.org/10.1017/CBO9780511608728
    [9] A. M. Bruckner, T. Hu, On scrambled sets for chaotic functions, Trans. Am. Math. Soc., 301 (1987), 289–297. https://doi.org/10.2307/2000339 doi: 10.2307/2000339
    [10] J. Vries, Elements of topological dynamics, Springer Dordrecht, 1993. https://doi.org/10.1007/978-94-015-8171-4
    [11] Y. A. Sidorov, Topologically indecomposable transformations of the $n$-dimensional space, Math. Notes Acad. Sci. USSR, 4 (1968), 939–943. https://doi.org/10.1007/BF01110833 doi: 10.1007/BF01110833
    [12] T. T. Devi, K. B. Mangang, On equicontinuity, transitivity and distality of iterated function systems, J. Dyn. Syst. Geom. Theor., 18 (2020), 223–239. https://doi.org/10.1080/1726037X.2020.1847766 doi: 10.1080/1726037X.2020.1847766
    [13] K. B. Mangang, Mean equicontinuity, sensitivity, expansiveness and distality of product dynamical systems, J. Dyn. Syst. Geom. Theor., 13 (2015), 27–33. https://doi.org/10.1080/1726037X.2015.1027106 doi: 10.1080/1726037X.2015.1027106
    [14] W. Brian, J. Meddaugh, B. Raines, Chain transitivity and variations of the shadowing property, Ergod. Theory Dyn. Syst., 35 (2015), 2044–2052. https://doi.org/10.1017/etds.2014.21 doi: 10.1017/etds.2014.21
    [15] D. V. Anosov, On a class of invariant sets of smooth dynamical systems, Proc. 5th Int. Conf. on Nonlin. Oscill, 2 (1970), 39–45.
    [16] R. Bowen, $\omega$-limit sets for Axiom A diffeomorphisms, J. Differ. Equations, 18 (1975), 333–339. https://doi.org/10.1016/0022-0396(75)90065-0 doi: 10.1016/0022-0396(75)90065-0
    [17] D. Kwietniak, P. Oprocha, A note on the average shadowing property for expansive maps, Topol. Appl., 159 (2012), 19–27. https://doi.org/10.1016/j.topol.2011.04.016 doi: 10.1016/j.topol.2011.04.016
    [18] A. D. Barwell, C. Good, P. Oprocha, Shadowing and expansivity in subspaces, Fund. Math., 219 (2012), 223–243. https://doi.org/10.4064/fm219-3-2 doi: 10.4064/fm219-3-2
    [19] A. Fakhari, F. H. Ghane, On shadowing: ordinary and ergodic, J. Math. Anal. Appl., 349 (2010), 151–155. https://doi.org/10.1016/j.jmaa.2009.11.004 doi: 10.1016/j.jmaa.2009.11.004
    [20] D. A. Dastjerdi, M. Hosseini, Sub-shadowings, Nonlinear Anal., 72 (2010), 3759–3766. https://doi.org/10.1016/j.na.2010.01.014
    [21] A. Darabi, Periodic shadowing in iterated function systems, Asian-Eur. J. Math., 15 (2022), 2250064. https://doi.org/10.1142/S1793557122500644 doi: 10.1142/S1793557122500644
    [22] J. Jiang, L. Wang, Y. Zhao, The $d$-shadowing property and average shadowing property for iterated function systems, Complexity, 2020 (2020), 4374508. https://doi.org/10.1155/2020/4374508 doi: 10.1155/2020/4374508
    [23] H. Wang, Q. Liu, Ergodic shadowing properties of iterated function systems, Bull. Malays. Math. Sci. Soc., 44 (2021), 767–783. https://doi.org/10.1007/s40840-020-00976-x doi: 10.1007/s40840-020-00976-x
    [24] R. Das, M. Garg, Average chain transitivity and the almost average shadowing property, Commun. Korean Math. Soc., 32 (2017), 201–214. https://doi.org/10.4134/CKMS.c160066 doi: 10.4134/CKMS.c160066
    [25] M. Garg, R. Das, Chaotic behaviour of maps possesing the almost average shadowing property, Hacet. J. Math. Stat., 50 (2021), 1371–1383.
    [26] J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J., 30 (1981), 713–747.
    [27] M. F. Barnsley, Fractals everywhere, 2 Eds., Academic Press, 1993. https://doi.org/10.1016/C2013-0-10335-2
    [28] M. F. Barnsley, S. Demko, Iterated function systems and the global construction of fractals, Proc. R. Soc. Lond., Ser. A, Math. Phys. Sci., 399 (1985), 243–275. https://doi.org/10.1098/rspa.1985.0057 doi: 10.1098/rspa.1985.0057
    [29] M. Kulczycki, D. Kwietniak, P. Oprocha, On almost specification and average shadowing properties, Fund. Math., 224 (2014), 241–278. https://doi.org/10.4064/fm224-3-4 doi: 10.4064/fm224-3-4
    [30] M. F. Nia, Parameterized $IFS$ with the asymptotic average shadowing property, Qual. Theory Dyn. Syst., 15 (2016), 367–381. https://doi.org/10.1007/s12346-015-0184-6 doi: 10.1007/s12346-015-0184-6
    [31] X. Wu, L. Wang, J. Liang, The chain properties and average shadowing property of iterated function systems, Qual. Theory Dyn. Syst., 17 (2018), 219–227. https://doi.org/10.1007/s12346-016-0220-1 doi: 10.1007/s12346-016-0220-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(594) PDF downloads(39) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog