Citation: Thiyam Thadoi Devi, Khundrakpam Binod Mangang, Sonika Akoijam, Lalhmangaihzuala, Phinao Ramwungzan, Jay Prakash Singh. Mean chain transitivity and almost mean shadowing property of iterated function systems[J]. AIMS Mathematics, 2024, 9(8): 20811-20825. doi: 10.3934/math.20241012
[1] | A. Allison, D. Abbott, Control systems with stochastic feedback, Chaos, 11 (2001), 715–724. https://doi.org/10.1063/1.1397769 doi: 10.1063/1.1397769 |
[2] | J. M. R. Parrondo, P. G. Harmer, D. Abbott, New paradoxical games based on Brownian ratchets, Phys. Rev. Lett., 85 (2000), 5226. https://doi.org/10.1103/PhysRevLett.85.5226 doi: 10.1103/PhysRevLett.85.5226 |
[3] | A. Z. Bahabadi, Shadowing and average shadowing properties of for iterated function systems, Georgian Math. J., 22 (2015), 179–184. https://doi.org/10.1515/gmj-2015-0008 doi: 10.1515/gmj-2015-0008 |
[4] | R. Devaney, An introduction to chaotic dynamical systems, 2 Eds., CRC Press, 2003. https://doi.org/10.4324/9780429502309 |
[5] | T. Y. Li, J. Yorke, Period three implies chaos, Amer. Math. Mon., 82 (1975), 985–992. https://doi.org/10.2307/2318254 |
[6] | E. T. Whittaker, D. Birkhoff's collected papers, Nature, 167 (1951), 250–251. https://doi.org/10.1038/167250a0 doi: 10.1038/167250a0 |
[7] | W. H. Gottschalk, G. A. Hedlund, Topological dynamics, American Mathematical Society Colloquium Publications, 1995. |
[8] | K. E. Petersen, Ergodic Theory, Cambridge University Press, 1983. https://doi.org/10.1017/CBO9780511608728 |
[9] | A. M. Bruckner, T. Hu, On scrambled sets for chaotic functions, Trans. Am. Math. Soc., 301 (1987), 289–297. https://doi.org/10.2307/2000339 doi: 10.2307/2000339 |
[10] | J. Vries, Elements of topological dynamics, Springer Dordrecht, 1993. https://doi.org/10.1007/978-94-015-8171-4 |
[11] | Y. A. Sidorov, Topologically indecomposable transformations of the $n$-dimensional space, Math. Notes Acad. Sci. USSR, 4 (1968), 939–943. https://doi.org/10.1007/BF01110833 doi: 10.1007/BF01110833 |
[12] | T. T. Devi, K. B. Mangang, On equicontinuity, transitivity and distality of iterated function systems, J. Dyn. Syst. Geom. Theor., 18 (2020), 223–239. https://doi.org/10.1080/1726037X.2020.1847766 doi: 10.1080/1726037X.2020.1847766 |
[13] | K. B. Mangang, Mean equicontinuity, sensitivity, expansiveness and distality of product dynamical systems, J. Dyn. Syst. Geom. Theor., 13 (2015), 27–33. https://doi.org/10.1080/1726037X.2015.1027106 doi: 10.1080/1726037X.2015.1027106 |
[14] | W. Brian, J. Meddaugh, B. Raines, Chain transitivity and variations of the shadowing property, Ergod. Theory Dyn. Syst., 35 (2015), 2044–2052. https://doi.org/10.1017/etds.2014.21 doi: 10.1017/etds.2014.21 |
[15] | D. V. Anosov, On a class of invariant sets of smooth dynamical systems, Proc. 5th Int. Conf. on Nonlin. Oscill, 2 (1970), 39–45. |
[16] | R. Bowen, $\omega$-limit sets for Axiom A diffeomorphisms, J. Differ. Equations, 18 (1975), 333–339. https://doi.org/10.1016/0022-0396(75)90065-0 doi: 10.1016/0022-0396(75)90065-0 |
[17] | D. Kwietniak, P. Oprocha, A note on the average shadowing property for expansive maps, Topol. Appl., 159 (2012), 19–27. https://doi.org/10.1016/j.topol.2011.04.016 doi: 10.1016/j.topol.2011.04.016 |
[18] | A. D. Barwell, C. Good, P. Oprocha, Shadowing and expansivity in subspaces, Fund. Math., 219 (2012), 223–243. https://doi.org/10.4064/fm219-3-2 doi: 10.4064/fm219-3-2 |
[19] | A. Fakhari, F. H. Ghane, On shadowing: ordinary and ergodic, J. Math. Anal. Appl., 349 (2010), 151–155. https://doi.org/10.1016/j.jmaa.2009.11.004 doi: 10.1016/j.jmaa.2009.11.004 |
[20] | D. A. Dastjerdi, M. Hosseini, Sub-shadowings, Nonlinear Anal., 72 (2010), 3759–3766. https://doi.org/10.1016/j.na.2010.01.014 |
[21] | A. Darabi, Periodic shadowing in iterated function systems, Asian-Eur. J. Math., 15 (2022), 2250064. https://doi.org/10.1142/S1793557122500644 doi: 10.1142/S1793557122500644 |
[22] | J. Jiang, L. Wang, Y. Zhao, The $d$-shadowing property and average shadowing property for iterated function systems, Complexity, 2020 (2020), 4374508. https://doi.org/10.1155/2020/4374508 doi: 10.1155/2020/4374508 |
[23] | H. Wang, Q. Liu, Ergodic shadowing properties of iterated function systems, Bull. Malays. Math. Sci. Soc., 44 (2021), 767–783. https://doi.org/10.1007/s40840-020-00976-x doi: 10.1007/s40840-020-00976-x |
[24] | R. Das, M. Garg, Average chain transitivity and the almost average shadowing property, Commun. Korean Math. Soc., 32 (2017), 201–214. https://doi.org/10.4134/CKMS.c160066 doi: 10.4134/CKMS.c160066 |
[25] | M. Garg, R. Das, Chaotic behaviour of maps possesing the almost average shadowing property, Hacet. J. Math. Stat., 50 (2021), 1371–1383. |
[26] | J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J., 30 (1981), 713–747. |
[27] | M. F. Barnsley, Fractals everywhere, 2 Eds., Academic Press, 1993. https://doi.org/10.1016/C2013-0-10335-2 |
[28] | M. F. Barnsley, S. Demko, Iterated function systems and the global construction of fractals, Proc. R. Soc. Lond., Ser. A, Math. Phys. Sci., 399 (1985), 243–275. https://doi.org/10.1098/rspa.1985.0057 doi: 10.1098/rspa.1985.0057 |
[29] | M. Kulczycki, D. Kwietniak, P. Oprocha, On almost specification and average shadowing properties, Fund. Math., 224 (2014), 241–278. https://doi.org/10.4064/fm224-3-4 doi: 10.4064/fm224-3-4 |
[30] | M. F. Nia, Parameterized $IFS$ with the asymptotic average shadowing property, Qual. Theory Dyn. Syst., 15 (2016), 367–381. https://doi.org/10.1007/s12346-015-0184-6 doi: 10.1007/s12346-015-0184-6 |
[31] | X. Wu, L. Wang, J. Liang, The chain properties and average shadowing property of iterated function systems, Qual. Theory Dyn. Syst., 17 (2018), 219–227. https://doi.org/10.1007/s12346-016-0220-1 doi: 10.1007/s12346-016-0220-1 |