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1. Introduction

A classical dynamical system consists of a phase space M together with a unique function g, where,
by iterating this function, we obtain the orbits of points. However, we can find many systems with some
finite maps rather than a single map that acts on the phase space. Indeed, we can find many natural
processes involved with two or more interactions whose evolutions evolve with discrete time [1, 2].
Therefore, there is a need to extend the study of dynamical systems by considering more than one
mapping. Mathematicians have studied such systems either as non-autonomous systems or as iterated
function systems (IFS). Therefore, these systems originate from a common study, specifically, the
study of classical dynamical systems. Hence, important concepts in dynamics, including transitivity
and shadowing [3], could be extended to IFSs.

In a dynamical system, generally, the future state follows from the initial state. Therefore, it is
often deterministic. However, they often appear chaotic, i.e., minor changes in the initial state bring
dramatically different long-term behavior. Both topological transitivity and shadowing are dynamical
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properties that are closely related to the chaoticity of dynamical systems. Usually, in chaos, topological
transitivity is a part of its definition, or it is implied by it (at least in some spaces), or it implies chaos.
Indeed, it is a part of the definition in Devaney’s chaos [4], while in Li–Yorke chaos [5], if a function
is topologically transitive (TT), then it is chaotic, but the converse is not valid. Moreover, a TT map
g has points that eventually move under iteration from one arbitrary small neighborhood to any other.
As a result, one cannot break the corresponding system into a pair of invariant subsystems under g.
Recently, mathematicians have studied this property intensively since it is a global characteristic in the
dynamical systems theory.

Topological transitivity was introduced to dynamical systems by Birkhoff [6] in the 1920s. The
term ‘topologically transitive (TT)’ is not a unified one. Instead, some authors use ‘regionally
transitive’ [7,8], ‘nomadic’ [9], ‘topologically ergodic’ [10], cf. [8], and ‘topologically indecomposable
(or irreducible)’ [11]. A mapping g of a dynamical system (M, g) is TT if, for any pair of non-
empty open sets W1,W2 ⊂ M, there is some k > 0 such that gk(W1) ∩ W2 , ∅. The notion of
topological transitivity was introduced to IFSs by Bahabadi in [3]. Devi and Mangang [12] have
also discussed this notion in IFSs by giving several examples, and they also extend the notions of
equicontinuity, sensitivity, and distality to IFSs. Moreover, Mangang [13] has studied the notions of
mean equicontinuity, mean sensitivity, and mean distality of the product dynamical systems.

A natural generalization of topological transitivity is chain transitivity. It connects any two points
of the phase space by a chain with any desired error bound. It is an essential notion of a dynamical
system. For example, if a dynamical system is chain transitive, then several shadowing properties,
including thick shadowing and shadowing, are equivalent [14]. In a dynamical system, there might be
a circumstance where for any error bound γ, we could not find a γ-chain but it may be simpler to obtain
an η-average (or η-mean) chain with any average (or mean) error bound γ. It leads to the introduction
of average (or mean) chain transitivity to dynamical systems.

In dynamical systems theory, our main goal is to study the nature of all its orbits. Likewise, in IFSs,
we study the orbit behaviors of the system. Yet, in particular cases, it is unlikely to compute the accurate
initial value of a point, which gives rise to the approximate values of the orbits. Thus, we obtain pseudo-
orbits of the system. The notion of shadowing puts these pseudo-orbits close to the actual orbits of the
system. It was introduced independently by Anosov [15] and Bowen [16] in the 1970s. Shadowing
plays an essential part in developing the qualitative theory of dynamical systems. In systems with
shadowing property, any pseudo-orbit is followed uniformly by a true orbit over an arbitrarily long
duration of time. Usually, it is crucial in systems with chaos, where even an arbitrarily small error
in the initial position leads to a large divergence of orbits. Moreover, the shadowing lemma in [16]
roughly states that shadowing is a common phenomenon in chaotic dynamical systems. In recent years,
shadowing has developed intensively and has become a notion of great interest. Many researchers have
introduced different aspects of shadowing in dynamical systems, including average shadowing [17], h-
shadowing [18], ergodic shadowing [19], thick shadowing [20], and d-shadowing [20]. Consequently,
these aspects of shadowing have also been extended to IFSs; for references, one can see, [3, 21–23].

Ruchi Das and Mukta Garg introduced the notions of average (or mean) chain properties and the
almost average (or mean) shadowing property to dynamical systems in [24]. Unlike the classical
shadowing property, the notion of the almost mean shadowing property deals with pseudo-orbits with
very small mean errors. In [25], the authors have also investigated the chaotic behavior of maps with
almost average (or mean) shadowing property.
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Motivated by this, in this work we wish to study the concepts of mean chain properties and
the almost mean shadowing property in IFSs. In Section 2, we give some preliminary discussions
on dynamical systems and IFSs. In Section 3, we introduce the notions of mean chain transitive
(MCT), mean chain mixing (MCM), and totally mean chain transitive (TMCT) to IFSs and study the
relations among them. We also give an example of an IFS that is not chain transitive (CT) but MCM
(Example 3.5). In Section 4, we introduce the notion of almost mean shadowing property (AMSP) to
IFSs and study some of its basic properties. We also study the relation between CT and AMSP in IFSs.
In particular, in Theorem 4.7, we find that an IFS is CT if one of the constituent maps is surjective, and
it has AMSP.

2. Preliminaries

We consider (M, g) to be a dynamical system where, (M, d) is a compact metric space and f is a
self-continuous map on M. Put Z+ = {n ∈ Z : n ≥ 0}}. Then the set O(s, g) = {gn(s) : n ∈ Z+} is said to
be the orbit of s ∈ M under (M, g).

Let (M, g) be a dynamical system. Let γ, η > 0, then

i) A finite sequence {s0, s1, . . . , sn} in M is an η-chain if d(g(si), si+1) < η, ∀ 0 ≤ i ≤ n − 1. When i
is not bounded above, it is called an η-pseudo-orbit.

ii) An η-pseudo-orbit {si}i∈Z+
is γ-shadowed by s ∈ M if d(gi(s), si) < γ, ∀ i ≥ 0.

A dynamical system (M, g) is said

a) To have shadowing property (SP) if ∀ γ > 0, ∃ η > 0 such that every η-pseudo-orbit is γ-shadowed
by some point in M.

b) To be chain transitive (CT) if ∀ η > 0, and for any pair of points s, t ∈ M, ∃ an η-chain joining s
and t.

c) To be chain mixing (CM) if ∀ η > 0, and for any pair of points s, t ∈ M, ∃ N > 0, such that ∀
n ≥ N, ∃ an η-chain joining s and t of length n.

Hutchinson introduced IFSs in [26] and were popularized by Barnsley [27]. Moreover, Barnsley
and Demko [28] first named the word IFS, and it has garnered much attention since then. Let Λ be a
non-empty finite set; an IFS F = {M; gα|α ∈ Λ} is a family of continuous mappings gα : M → M,
where α ∈ Λ, and (M, d) is a compact metric space. Put ΛZ+ = {〈αi〉 : αi ∈ Λ ∀i ∈ Z+}. We use the
short notation

Fσi = gαi−1 ◦ gαi−2 ◦ · · · ◦ gα1 ◦ gα0 .

Let σ = 〈αi〉 be a typical member of ΛZ+ . An infinite sequence {si}i∈Z+
in M is an orbit of F if ∃

σ ∈ ΛZ+ , such that si = Fσi(s0), where Fσi(s0) = gαi−1 ◦ gαi−2 ◦ · · · ◦ gα1 ◦ gα0(s0) and Fσ0(s0) = s0.
So, for any σ ∈ ΛZ+ , we define Oσ(s) = {Fσi(s) : i ∈ Z+} as an orbit of s ∈ M related to σ. For an
IFS F and for a fixed integer n > 0, we define Λn = {(α0, α1, . . . , αn−1) : αi ∈ Λ, 0 ≤ i ≤ n − 1};
fµ = gαn−1 ◦ · · · ◦ gα1 ◦ gα0; and Fn = { fµ | µ ∈ Λn}.

Bahabadi [3] extended the notions of SP, average (or mean) SP (MSP), TT, CT and CM to IFSs. An
IFS F is TT if for any pair of non-empty open sets W1,W2 ⊂ M, ∃ σ ∈ ΛZ+ such that Fσk(W1)∩W2 , ∅

for some k ≥ 0.
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Let F = {M; gα|α ∈ Λ} be an IFS and let γ, η > 0, then

i) A finite sequence {s0, s1, . . . , sn} in M is an η-chain if ∃ {α0, α1, . . . , αn−1} such that
d(gαi(si), si+1) < η, ∀ 0 ≤ i ≤ n − 1. When i is not bounded above, it is called an η-pseudo-
orbit.

ii) An η-pseudo-orbit {si}i∈Z+
is γ-shadowed by s ∈ M if ∃ σ ∈ ΛZ+ such that d(Fσi(s), si) < γ, ∀

i ≥ 0.

iii) {si}i∈Z+
is an η-mean-pseudo-orbit if ∃ N > 0, and ∃ σ ∈ ΛZ+ such that for any n ≥ N,

1
n

n−1∑
i=0

d(gαi(si), si+1) < η.

iv) An η-mean-pseudo-orbit {si}i∈Z+
is γ-mean shadowed by s ∈ M if

lim sup
n→∞

1
n

n−1∑
i=0

d(Fσi(s), si) < γ.

An IFS F = {M; gα|α ∈ Λ} is said

a) To have SP if ∀ γ > 0, ∃ η > 0 such that every η-pseudo-orbit is γ-shadowed by a point in M.

b) To be CT if ∀ η > 0, and for any pair of points s, t ∈ M, ∃ an η-chain joining s and t.

c) To be CM if ∀ η > 0 and for any pair of points s, t ∈ M, ∃ N > 0 such that ∀ n ≥ N, ∃ an η-chain
joining s and t of length n.

d) To have mean shadowing property (MSP) if ∀ γ > 0, ∃ η > 0 such that every η-mean-pseudo-orbit
is γ-mean shadowed by a point in M.

Mean chain properties and almost mean shadowing properties in dynamical systems have been
introduced in [24]. The main aim of this paper is to extend these notions in IFSs. Therefore, we recall
the following definitions in dynamical systems:

Let η > 0, a finite sequence {s0, s1, . . . , sn} is an η-mean chain of length n if ∃ an integer 0 < P ≤ n
such that ∀ P ≤ m ≤ n,

1
m

m−1∑
i=0

d(g(si), si+1) < η.

(M, g) is said to be mean chain transitive (MCT) if, for every η > 0 and for any pair of points
s, t ∈ M, ∃ an η-mean chain joining s and t. It is said to be totally mean chain transitive (TMCT) if gk

is MCT for each k > 0. And, it is said to be mean chain mixing (MCM) if for every η > 0 and for any
pair of points s, t ∈ M, ∃ an integer N > 0 such that ∀ n ≥ N, ∃ an η-mean chain joining s and t of
length n.

Let η > 0, a sequence {si}i∈Z+
is an almost η-mean pseudo-orbit of (M, g) if

lim sup
n→∞

1
n

n−1∑
i=0

d(g(si), si+1) < η.
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An almost η-mean pseudo-orbit {si}i∈Z+
is γ-mean shadowed by s ∈ M if

lim sup
n→∞

1
n

n−1∑
i=0

d(gi(s), si) < γ.

(M, g) has almost mean shadowing property (AMSP) if for every γ > 0, ∃ an η > 0 such that every
almost η-mean pseudo-orbit {si}i∈Z+

is γ-mean shadowed by a point in M. Throughout the paper, we
consider (M, d) to be a compact metric space and gα : X → X to be a continuous self-map in X for any
α ∈ Λ.

3. Mean chain properties

This section introduces the notions of mean chain transitivity (MCT), mean chain mixing (MCM),
and totally mean chain transitivity (TMCT) to IFSs, and proves some preliminary results.

Definition 3.1. Let η > 0, a finite sequence {s0, s1, . . . , sn} is an η-mean chain of length n if ∃
{α0, α1, . . . , αn−1} and an integer 0 < P ≤ n such that ∀ integer m with P ≤ m ≤ n,

1
m

m−1∑
i=0

d(gαi(si), si+1) < η.

Definition 3.2. An IFS F is considered to be MCT if for any η > 0 and for any pair of points s, t ∈ M,
∃ an η-mean chain joining s and t.

Definition 3.3. An IFS F is considered to be TMCT if Fk is MCT for each k > 0.

Definition 3.4. An IFS F is considered to be MCM if for any η > 0 and for any pair of points s, t ∈ M,
∃ an integer N > 0 such that ∀ n ≥ N, ∃ an η-mean joining s and t of length n.

Following, we give an example of an IFS that is not CT but MCM.

Example 3.5. Consider (M, d) to be a metric space with more than two elements, and let a, b ∈ M.
Let g1, g2 be two self-maps in M defined by g1(s) = a and g2(s) = b for every s ∈ M. Then, the IFS,
F = {M; g1, g2} is not CT but MCM.

Proof. Clearly, F is not CT, indeed for any pair s, t ∈ M with t < {a, b}, there is no η-chain joining s and
t with η < min{d(t, a), d(t, b)}. Now, we claim that F is MCM. Take η > 0 and s, t ∈ M. For t ∈ {a, b},
it is obvious. Suppose t < {a, b} and, let max{d(t, a), d(t, b)} = γ > 0. Choose an integer N > 0 for
which N > γ

η
. For every n ≥ N and a finite sequence {αi}

n−1
i=0 where αi ∈ {1, 2}, define si = Fσi(s) for

0 ≤ i ≤ n − 1 and sn = t. Then, for every integer m with N ≤ m ≤ n, we have

1
m

m−1∑
i=0

d(gαi(si), si+1) < η.

Thus, {si}
n
i=0 is an η-mean chain joining s and t of length n. Hence, F = {M; g1, g2} is not CT but

MCM. �

Theorem 3.6. Let F be an IFS. Then, F is MCT if Fk is MCT for some k > 1.
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Proof. Let η > 0 and let s, t ∈ M be two points. Let k > 1 be fixed such that Fk is MCT. Then,
there exists an η-mean chain {si}

n
i=0 of Fk joining s and t. Therefore, there exists a finite sequence

{µ0, µ1, . . . , µn−1} and an integer 0 < P ≤ n such that ∀ integer m with P ≤ m ≤ n,

1
m

m−1∑
i=0

d( fµi(si), si+1) < η (3.1)

where fµi = gαi
k−1
◦ gαi

k−2
◦ · · · ◦ gαi

0
and µi = {αi

0, α
i
1, . . . , α

i
k−1} for 0 ≤ i ≤ n − 1.

For 0 ≤ i ≤ n, let

t j =

si, if j = ki,

gαi
j−ki−1
◦ gαi

j−ki−2
◦ · · · ◦ gαi

0
(si), if ki < j < (i + 1)k,

i.e.,
{t j}

nk
j=0 = {t0 = s, t1 = gα0

0
(s), t2 = gα0

1
◦ gα0

0
(s), . . . , tk = s1, tk+1 = gα1

0
(s1),

tk+2 = gα1
1
◦ gα1

0
(s1), . . . , tnk−1 = gαn−1

k−2
◦ · · · ◦ gαn−1

0
(sn−1), tnk = t}.

Again, let
{α
′

j}
nk
j=0 = {α0

0, α
0
1, . . . , α

1
0, α

1
1, . . . , α

1
k−1, . . . , α

n−1
k−2, α

n−1
k−1}.

Then, ∀ integer l with n ≤ l ≤ nk, we have

1
l

l−1∑
j=0

d(gα′j(t j), t j+1) ≤
1
n

nk−1∑
j=0

d(gα′j(t j), t j+1).

For j , ik, the term vanishes, therefore

1
l

l−1∑
j=0

d(gα′j(t j), t j+1) <
1
n

n−1∑
i=0

d( fµi(si), si+1).

By using (3.1), we have
1
l

l−1∑
j=0

d(gα′j(t j), t j+1) < η.

Thus, {t j}
nk
j=0 is an η-mean chain joining s and t of length nk. Hence F is MCT. �

Theorem 3.7 shows that a TMCT IFS is MCM if the constituent maps are Lipschitz. A self-
continuous function g on a metric space M is a Lipschitz function if ∃ L > 0 such that d(g(s), g(t)) ≤
Ld(s, t), ∀ s, t ∈ M.

Theorem 3.7. Let F = {M; gα|α ∈ Λ} be an IFS where each gα is a Lipschitz function. If F is MCM,
then F is TMCT.

Proof. Let k > 1 be an integer, let η > 0 and let s, t ∈ M be any pair of points. For each α ∈ Λ, as
gα is Lipschitz, ∃ Lα > 0 such that d(gα(u), gα(v)) ≤ Lαd(u, v), ∀ u, v ∈ M. Let L =max{Lα : α ∈ Λ}.
Then, d(gα(u), gα(v)) ≤ Ld(u, v), ∀ α ∈ Λ and ∀ u, v ∈ M. Without loss of generality, let L ≥ 1 and
take γ =

η

kLk−1 . Since F is MCM, ∃ N > 0 such that ∀ n ≥ N, ∃ a γ-mean chain of F joining s and t
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of length n. Take an integer r > 0 such that rk ≥ N. Then, we can get a γ-mean chain of F joining
s and t of length rk, say {s0 = s, s1, . . . , srk = t}. Therefore, there exists an integer 0 < P ≤ rk and a
finite sequence, say {αi}

rk−1
i=0 = {α0

0, α
0
1, . . . , α

0
k−2, α

0
k−1, α

1
0, α

1
1, . . . , α

1
k−2, α

1
k−1, . . . , α

r−1
k−2, α

r−1
k−1} such that ∀

integer m with P ≤ m ≤ rk,
1
m

m−1∑
i=0

d(gαi(si), si+1) < γ. (3.2)

Put γi = d(gαi(si), si+1) for 0 ≤ i ≤ rk − 1. Then, from Eq (3.2), we get

1
rk

rk−1∑
i=0

γi < γ. (3.3)

Define ti = sik for 0 ≤ i ≤ r. We claim that {t0, t1, . . . , tr} is an η-mean chain of Fk joining s and t.
Let fµi = gαi

k−1
◦ gαi

k−2
◦ · · · ◦ gαi

0
where µi = {αi

0, α
i
1, . . . , α

i
k−1}, ∀ 0 ≤ i ≤ r − 1. Then, ∀ 0 ≤ i ≤ r − 1,

we have

d( fµi(ti), ti+1) = d( fµi(sik), s(i+1)k)
= d(gαi

k−1
◦ gαi

k−2
◦ · · · ◦ gαi

0
(sik), (s(i+1)k))

≤ d
(
gαi

k−1
◦ gαi

k−2
◦ · · · ◦ gαi

0
(sik), gαi

k−1
◦ gαi

k−2
◦ · · · ◦ gαi

1
(sik+1)

)
+ · · · + d

(
gαi

k−1
◦ gαi

k−2
(s(i+1)k−2), gαi

k−1
(s(i+1)k−1)

)
+d

(
gαi

k−1
(s(i+1)k−1), s(i+1)k

)
≤ Lk−1γik + · · · + L2γ(i+1)k−2 + Lγ(i+1)k−1

< Lk−1(γik + · · · + γ(i+1)k−2 + γ(i+1)k−1).

Therefore, using Eq (3.3), it is clear that

1
r

r−1∑
i=0

d( fµi(ti), ti+1) <
1
r

Lk−1
rk−1∑
i=0

γi < Lk−1kγ = η.

Thus, {t0, t1, . . . , tr} is an η-mean chain of Fk joining s and t. Hence, F is TMCT. �

Given two compact metric spaces (M, d) and (M′, d
′

), we take the metric space M ×M′ with metric

d
′′ ((s1, t1), (s2, t2)) =max{d(s1, s2), d

′

(t1, t2)}

and let F = {M, gα|α ∈ Λ} and G = {M′; gβ|β ∈ Γ} be two IFSs.
Then, we define the IFS, F ×G as

F ×G = {M × M′; hα,β|α ∈ Λ, β ∈ Γ},

where hα,β(s, t) = (gα(s), gβ(t)), ∀ s ∈ M and t ∈ M′.

Theorem 3.8. If F = {M; gα|α ∈ Λ} is a MCM IFS, then F × F is MCT.

Proof. Let η > 0 and let (s, t), (u, v) ∈ M × M be any two points.
Since F is MCM and as η

2 > 0, there exist integers N1, N2 > 0 such that for any n1 ≥ N1 and
n2 ≥ N2, there are η

2 -mean chains joining s and u, and joining t and v respectively.

AIMS Mathematics Volume 9, Issue 8, 20811–20825.
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Put N =max{N1,N2}. Then, we can find two η

2 -mean chains joining s and u, t and v respectively;
say {s0 = s, s1, . . . , sN = u} and {t0 = t, t1, . . . , tN = v}. Therefore, there exist finite sequences
{α0, α1, . . . , αN−1} and {α

′

0, α
′

1, . . . , α
′

N−1}, and integers 0 < P1, P2 ≤ N such that ∀ integers m′,m′′

with P1 ≤ m′ ≤ N and P2 ≤ m′′ ≤ N, we have

1
m′

m′−1∑
i=0

d(gαi(si), si+1) <
η

2

and
1

m′′

m′′−1∑
i=0

d(gα′i (ti), ti+1) <
η

2
.

Take P =max{P1, P2} and consider {(si, ti)}Ni=0. Then, ∀ integer m with P ≤ m ≤ N, we have

1
m

m−1∑
i=0

d
′′
(
(gαi(si), gα′i (ti)), (si+1, ti+1)

)
≤

1
m

m−1∑
i=0

d(gαi(si), si+1) +
1
m

m−1∑
i=0

d(gα′i (ti), ti+1)

<
η

2
+
η

2
= η.

Thus, {(si, ti)}Ni=0 is an η-mean chain of F × F joining (s, t) and (u, v) of length N. Hence, F × F is
MCT. �

Theorem 3.9. If F is a TMCT IFS, then F × F is MCT.

Proof. Let η > 0 and let (s, t), (u, v) ∈ M × M be any two points. By definition of TMCT, we have
F is MCT. Suppose, {s0 = s, s1, . . . , sn = u} and {u0 = u, u1, . . . , uk = u} are two η

4 -mean chains
respectively, joining s and u, and joining u to itself. Then, there exist finite sequences {α0, α1, . . . , αn−1}

and {α
′

0, α
′

1, . . . , α
′

k−1} and integers 0 < P1 ≤ n and 0 < P2 ≤ k such that

1
m

m−1∑
i=0

d(gαi(si), si+1) < η

4 , ∀ integer m with P1 ≤ m ≤ n,

and

1
m′

m′−1∑
i=0

d(gα′i (ui), ui+1) < η

4 , ∀ integer m′ with P2 ≤ m′ ≤ k.

In particular,

1
n

n−1∑
i=0

d(gαi(si), si+1) < η

4 ,

and

1
k

k−1∑
i=0

d(gα′i (ui), ui+1) < η

4 .

From the definition of TMCT, Fk is MCT. Let {t0 = gαn−1 ◦ · · · ◦ gα0(t), t1, . . . , tp = v} be an η

2 -mean
chain of Fk joining gαn−1 ◦ · · · ◦ gα0(t) and v of length p. Therefore, we can find a finite sequence
{µ0, µ1, . . . , µp−1} and an integer 0 < P ≤ p such that
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1
m′′

m′′−1∑
i=0

d( fµi(ti), ti+1) < η

2 , ∀ integer m′′ with P ≤ m′′ ≤ p,

where fµi = gαi
k−1
◦ gαi

k−2
◦ · · · ◦ gαi

0
and µi = {αi

0, α
i
1, . . . , α

i
k−1} for 0 ≤ i ≤ p − 1.

Consider

{zi}
n+pk
i=0 = {t, gα0(t), . . . , gαn−1 ◦ · · · ◦ gα0(t)

= t0, gα0
0
(t0), . . . , gα0

k−2
◦ · · · ◦ gα0

0
(t0), t1, gα1

0
(t1), . . . , gα1

k−2
◦ · · · ◦ gα1

0
(t1), t2, gα2

0
(t2),

. . . , tp−1, gαp−1
0

(tp−1), . . . , gαp−1
k−2
◦ · · · ◦ gαp−1

0
(tp−1), tp = v}

with respect to the finite sequence

{α
′′

i }
n+pk
i=0 = {α0, α1, . . . , αn−1, α

0
0, α

0
1, . . . , α

0
k−1, α

1
0, . . . , α

1
k−1, . . . , α

p−1
0 , . . . , α

p−1
k−1 }.

Then, it is clear that the term d(gα′′i (zi), zi+1) vanishes whenever i , n + jk where 0 < j ≤ p − 1.
Therefore,

1
n + pk

n+pk−1∑
i=0

d(gα′′i (zi), zi+1) =
1

n + pk

p−1∑
i=0

d(gαi
k−1
◦ gαi

k−2
◦ · · · ◦ gαi

0
(ti), ti+1)

=
1

n + pk

p−1∑
i=0

d( fµi(ti), ti+1)

<
1
p

p−1∑
i=0

d( fµi(ti), ti+1)

<
η

2
.

Thus, {zi}
n+pk
i=0 is an η

2 -mean chain of F joining t and v.
Again, consider

{wi}
n+pk
i=0 = {s0 = s, s1, . . . , sn = u = u0, u1, . . . , uk = u︸           ︷︷           ︸

p times

, u1, . . . , uk = u, . . . , u1, . . . , uk = u}

with respect to the finite sequence

{α
′′′

i }
n+pk
i=0 = {α0, α1, . . . , αn−1, α

′

0, α
′

1, . . . , α
′

k−1︸             ︷︷             ︸
p times

, . . . , α
′

0, α
′

1, . . . , α
′

k−1}.

Now,

1
n + pk

n+pk−1∑
i=0

d(gα′′′i
(wi),wi+1) =

1
n + pk

 n−1∑
i=0

d(gαi(si), si+1) + p
k−1∑
i=0

d(gα′i (ui), ui+1)


=

1
n + pk

n−1∑
i=0

d(gαi(si), si+1) +
p

n + pk

k−1∑
i=0

d(gα′i (ui), ui+1)

<
1
n

n−1∑
i=0

d(gαi(si), si+1) +
p
pk

k−1∑
i=0

d(gα′i (ui), ui+1)
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<
η

4
+
η

4
=

η

2
.

Thus, {wi}
n+pk
i=0 is an η

2 -mean chain of F joining s and u. This implies that {(wi, zi)}
n+pk
i=0 is an η

2 -mean
chain of F × F joining (s, t) and (u, v) with respect to d

′′

. Hence, F × F is MCT. �

4. Almost mean shadowing property

This section introduces the notion of almost mean shadowing property (AMSP) to IFSs.

Definition 4.1. Let η > 0, a sequence {si}i∈Z+
is an almost η-mean pseudo-orbit of an IFSF if ∃σ ∈ ΛZ+

such that

lim sup
n→∞

1
n

n−1∑
i=0

d(gαi(si), si+1) < η.

An almost η-mean pseudo-orbit {si}i∈Z+
of an IFS F is γ-mean shadowed by s ∈ M if

lim sup
n→∞

1
n

n−1∑
i=0

d(Fσi(s), si) < γ.

Definition 4.2. An IFS F has AMSP if for any γ > 0, ∃ an η > 0 such that every almost η-mean
pseudo-orbit {si}i∈Z+

is γ-mean shadowed by a point in M.

Remark 4.3. From the definition, it is clear that AMSP implies MSP, but the converse may not be
true.

In the following, we give an example of an IFS that has MSP but does not have the AMSP.

Example 4.4. Let (M, d) be the metric space as defined in [29, Example 9.1]. Let g1, g2 be self maps
on M defined as

g1(p) = p, g1(an) = an+1, g1(bn) = bn+1,
g2(p) = p, g2(an) = an, g2(bn) = bn+1.

Then, the IFS, F = {M; g1, g2} has MSP but does not have the AMSP.

Proof. Proceeding similarly, as in the proof of [29, Theorem 9.2], it is clear that F has MSP.
Also, in [24], it is given that (M, g1) does not have the AMSP. So, for any ε > 0, we can find a δ > 0

and an almost δ-pseudo orbit with respect to σ = {g1, g1, g1, · · · } which is not ε-shadowed in average
by any point in M. Hence, the IFS F = {M; g1, g2} does not have the AMSP. �

Example 4.5. Let F be the IFS as defined in [30, Example 3.5]. Then, F, does not have MSP and
AMSP.

Proof. In [31, Remark 4.5], it has been given that F does not have MSP. Using, the above Remark 4.3,
it is clear that F does not have the AMSP. �

Theorem 4.6. If F is an IFS with AMSP, then so does Fk for every k ≥ 2.
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Proof. Let k ≥ 2 and γ > 0. By hypothesis, ∃ an η > 0 such that every almost η-mean pseudo-orbit is
γ

k -mean shadowed by a point in M.
Let {ti}i∈Z+

be an almost η-mean pseudo-orbit of Fk. Then, ∃ σ = 〈µi〉 such that ∀ µi ∈ σ

lim sup
n→∞

1
n

n−1∑
i=0

d( fµi(ti), ti+1) < η,

where fµi = gαi
k−1
◦ gαi

k−2
◦ · · · ◦ gαi

0
and µi = {αi

0, α
i
1, . . . , α

i
k−1} ∈ Λk, ∀ i ∈ Z+.

Now, for some σ
′

= 〈α
′

j〉 = {α0
0, α

0
1, . . . , α

0
k−1, α

1
0, . . .}, consider a sequence {s j} j∈Z+

defined by

s j =

ti, if j = ki,

gαi
j−ki−1
◦ gαi

j−ki−2
◦ · · · ◦ gαi

0
(ti), if ki < j < (i + 1)k.

For ki < j < (i + 1)k, we have 0 < l ≤ k − 1 such that s j = sik+l = gαi
l−1
◦ gαi

l−2
◦ · · · ◦ gαi

0
(ti). Also, for

any integer n > 0, we can get some i ≥ 0 and 0 < l ≤ k − 1 for which n = ik + l. Thus,

lim sup
n→∞

1
n

n−1∑
j=0

d(gα′j(s j), s j+1) = lim sup
i→∞

1
ik + l

ik+l−1∑
j=0

d(gα′j(s j), s j+1).

For j , ki − 1, the term vanishes. Therefore,

lim sup
n→∞

1
n

n−1∑
j=0

d(gα′j(s j), s j+1) = lim sup
i→∞

1
ik + l

i−1∑
j=0

d( fµ j(t j), t j+1)

≤ lim sup
i→∞

1
i

i−1∑
j=0

d( fµ j(t j), t j+1)

< η.

This implies that {s j} j∈Z+
is an almost η-mean pseudo-orbit of F with respect to σ

′

. Therefore, ∃
z ∈ M such that

lim sup
n→∞

1
n

n−1∑
j=0

d(Fσ′j(z), s j) <
γ

k .

Now,

lim sup
n→∞

1
n

n−1∑
i=0

d(Fk
σi

(z), ti) = lim sup
n→∞

1
n

n−1∑
i=0

d(Fσ′ki
(z), ski)

≤ lim sup
n→∞

1
n

n−1∑
i=0

k−1∑
l=0

d(Fσ′ki+l
(z), ski+l)

= k lim sup
n→∞

1
nk

nk−1∑
j=0

d(Fσ′j(z), s j)

< γ.

Hence, Fk hasAMSP for every k ≥ 2. �

Theorem 4.7. Let F = {M; gα|α ∈ Λ} be an IFS, where one of the gα is surjective. If F has AMSP, then
it is CT.
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Proof. Let γ > 0 and let s, t ∈ M be two points. Since {gα : α ∈ Λ} is a family of uniformly continuous
mappings, it is uniformly equicontinuous. Thus, ∃ 0 < η < γ such that ∀ u, v ∈ M and ∀ α ∈ Λ,
d(gα(u), gα(v)) < γ whenever d(u, v) < η. By hypothesis, F has AMSP. Therefore, ∃ δ > 0 such that
every almost δ-mean pseudo-orbit of F is η

2 -mean shadowed by a point in M.
Let D =diam(M) and let K > 0 be an integer such that D

K < δ. Suppose for a fixed α∗ ∈ Λ, gα∗ is
surjective. Then, we can easily see that g−l

α∗(t) exists ∀ integer l with 0 ≤ l ≤ K − 1.
For i ∈ Z+, fix an infinite sequence σ = 〈αi〉 ∈ ΛZ+ . Again, for j ∈ Z+, we consider an infinite

sequence {s j} j∈Z+
, where

s j =

Fσ j−2iK , 2iK ≤ j ≤ (2i + 1)K − 1,
g j−2(i+1)K+1
α∗ (t), (2i + 1)K ≤ j ≤ 2(i + 1)K − 1.

For any α′ ∈ Λ, let us define σ
′

= 〈α
′

j〉 ∈ ΛZ+ , where

α
′

j =


α j−2iK , 2iK ≤ j ≤ (2i + 1)K − 2,
α′, j = (2i + 1)K − 1,
α∗, (2i + 1)K ≤ j ≤ 2(i + 1)K − 2,
α′ j = 2(i + 1)K − 1.

Now, for any n > 0 with iK ≤ n ≤ (i + 1)K, we have

1
n

n−1∑
j=0

d(gα′j(s j), s j+1) ≤ iD
iK = D

K < η.

Therefore,

lim sup
n→∞

1
n

n−1∑
j=0

d(gα′j(s j), s j+1) < η.

This implies that {s j} j∈Z+
is an almost δ-mean pseudo-orbit of F. By hypothesis, ∃ z ∈ M such that

lim sup
n→∞

1
n

n−1∑
j=0

d(Fσ′j(z), s j) <
η

2
. (4.1)

Notice that, there exist infinitely many i ∈ Z+ for which there is some l with 2iK ≤ l ≤ (2i+1)K−1,
i.e., sl ∈ {s,Fσ1(s),Fσ2(s), . . . ,FσK−1(s)} such that d

(
Fσ′l

(z), sl

)
< η

2 . Otherwise,

lim sup
n→∞

1
n

n−1∑
j=0

d(Fσ′j(z), s j) ≥
η

2

which contradicts (4.1).
Similarly, the above statement holds when (2i + 1)K ≤ l ≤ 2(i + 1)K − 1, i.e., sl ∈

{g−(K−1)
α∗ (t), g−(K−2)

α∗ (t), . . . , g−1
α∗ (t), t}.

Thus, we can find two integers l1 and l2 with 0 < l1 < l2 such that sl1 = Fσp1
(s) for some 0 ≤

p1 ≤ K − 1 satisfying d
(
Fσ′l1

(z), sl1

)
< η

2 and sl2 = g−p2
α∗ (t) for some 0 ≤ p2 ≤ K − 1 satisfying
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d
(
Fσ′l2

(z), sl2

)
< η

2 . Using the condition of equicontinuity, we have, d
(
gα′l1

(Fσ′l1
(z)), gα′l1

(sl1)
)
< γ. This

implies that d
(
Fσ′l1+1

(z), gα′l1
(sl1)

)
< γ and d

(
Fσ′l2

(z), sl2

)
< γ. Therefore,

{s,Fσ1(s),Fσ2(s), . . . ,Fσp1−1(s),Fσp1
(s) = sl1 ,Fσ′l1+1

(z),

Fσ′l1+2
(z), . . . ,Fσ′l2−1

(z), g−p2
α∗ (t) = sl2 , g

−(p2−1)
α∗ (t), . . . , g−1

α∗ (t), t} is a γ-chain joining s and t with respect to

the finite sequence {α0, α1, . . . , αp1−1, α
′

l1
, α

′

l1+1, . . . , α
′

l2−1, α
∗, α∗, . . . α∗︸         ︷︷         ︸

p2 times

}. Hence, F is CT. �

5. Conclusions

In this work, we have introduced the notions of MCT, TMCT, MCM, and AMSP to IFSs and studied
their interrelations. In Example 3.5, we have given an example of an IFS that is not CT but MCM.
In Theorem 3.7, we proved that a TMCT IFS is MCM if the constituent maps are Lipschitz. For an
iterated function system F, we show that F × F is MCT if F is MCM. We also showed that F × F is
MCT if F is TMCT. Lastly, we prove that an IFS F, one of whose constituent maps gα is surjective and
has AMSP, is CT.
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