For $ a, b > 0 $ with $ a\neq b $, the Gauss lemniscate mean $ \mathcal{LM}(a, b) $ is defined by
$ \begin{equation*} \mathcal{LM}(a,b) = \left\{\begin{array}{lll} \frac{\sqrt{a^2-b^2}}{\left[{ {\rm{arcsl}}}\left(\sqrt[4]{1-b^2/a^2}\right)\right]^2}, \ &a>b,\\ \frac{\sqrt{b^2-a^2}}{\left[{ {\rm{arcslh}}}\left(\sqrt[4]{b^2/a^2-1}\right)\right]^2},\ &a<b, \end{array}\right. \end{equation*} $
where $ { {\rm{arcsl}}}(x) = \int_{0}^{x}\frac{dt}{\sqrt{1-t^4}} \ (|x| < 1) $ and $ {\rm{arcslh}}(x) = \int_{0}^{x}\frac{dt}{\sqrt{1+t^4}}\ (x\in \mathbb{R}) $ is the arc lemniscate sine and hyperbolic arc lemniscate sine functions respectively. In this paper, we mainly establish sharp two-parameter bounds for four symmetric and homogeneous means derived from $ \mathcal{LM}(a, b) $, $ \mathcal{LM}_{\mathcal{GA}}(a, b) = \mathcal{LM}(\mathcal{G}(a, b), \mathcal{A}(a, b)) $, $ \mathcal{LM}_{\mathcal{AG}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $, $ \mathcal{LM}_{\mathcal{AQ}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $ and $ \mathcal{LM}_{\mathcal{QA}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $. The obtained results lead to several asymptotical inequalities for Lemniscate functions. Here $ \mathcal{A}(a, b) = (a+b)/2 $, $ \mathcal{G}(a, b) = \sqrt{ab} $ and $ \mathcal{Q}(a, b) = \sqrt{(a^2+b^2)/2} $ are the classical arithmetic, geometric, and quadratic means.
Citation: Wei-Mao Qian, Miao-Kun Wang. Sharp bounds for Gauss Lemniscate functions and Lemniscatic means[J]. AIMS Mathematics, 2021, 6(7): 7479-7493. doi: 10.3934/math.2021437
For $ a, b > 0 $ with $ a\neq b $, the Gauss lemniscate mean $ \mathcal{LM}(a, b) $ is defined by
$ \begin{equation*} \mathcal{LM}(a,b) = \left\{\begin{array}{lll} \frac{\sqrt{a^2-b^2}}{\left[{ {\rm{arcsl}}}\left(\sqrt[4]{1-b^2/a^2}\right)\right]^2}, \ &a>b,\\ \frac{\sqrt{b^2-a^2}}{\left[{ {\rm{arcslh}}}\left(\sqrt[4]{b^2/a^2-1}\right)\right]^2},\ &a<b, \end{array}\right. \end{equation*} $
where $ { {\rm{arcsl}}}(x) = \int_{0}^{x}\frac{dt}{\sqrt{1-t^4}} \ (|x| < 1) $ and $ {\rm{arcslh}}(x) = \int_{0}^{x}\frac{dt}{\sqrt{1+t^4}}\ (x\in \mathbb{R}) $ is the arc lemniscate sine and hyperbolic arc lemniscate sine functions respectively. In this paper, we mainly establish sharp two-parameter bounds for four symmetric and homogeneous means derived from $ \mathcal{LM}(a, b) $, $ \mathcal{LM}_{\mathcal{GA}}(a, b) = \mathcal{LM}(\mathcal{G}(a, b), \mathcal{A}(a, b)) $, $ \mathcal{LM}_{\mathcal{AG}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $, $ \mathcal{LM}_{\mathcal{AQ}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $ and $ \mathcal{LM}_{\mathcal{QA}}(a, b) = \mathcal{LM}(\mathcal{A}(a, b), \mathcal{G}(a, b)) $. The obtained results lead to several asymptotical inequalities for Lemniscate functions. Here $ \mathcal{A}(a, b) = (a+b)/2 $, $ \mathcal{G}(a, b) = \sqrt{ab} $ and $ \mathcal{Q}(a, b) = \sqrt{(a^2+b^2)/2} $ are the classical arithmetic, geometric, and quadratic means.
[1] | J. M. Borwein, P. B. Borwein, Pi and the AGM: A study in analytic number theory and computational complexity, New York: John Wiley & Sons, 1987. |
[2] | B. C. Carlson, Algorithms involving arithmetic and geometric means, Am. Math. Mon., 78 (1971), 496–505. doi: 10.1080/00029890.1971.11992791 |
[3] | E. Neuman, On Gauss lemniscate functions and lemniscatic mean, Math. Panno., 18 (2007), 77–94. |
[4] | M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables, New York: Dover, 1965. |
[5] | H. Alzer, Sharp inequalities for the complete elliptic integral of the first kind, Math. Proc. Cambridge, 124 (1998), 309–314. doi: 10.1017/S0305004198002692 |
[6] | H. Alzer, S. L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., 172 (2004), 289–312. doi: 10.1016/j.cam.2004.02.009 |
[7] | S. L. Qiu, M. Vuorinen, Special functions in geometric function theory, In: Handbook of complex analysis: Geometric function theory, 2 (2005), 621–659. |
[8] | M. K. Wang, Y. M. Chu, Asymptotical bounds for complete elliptic integrals of the second kind, J. Math. Anal. Appl., 402 (2013), 119–126. doi: 10.1016/j.jmaa.2013.01.016 |
[9] | M. K. Wang, H. H. Chu, Y. M. Li, Y. M. Chu, Answers to thress conjectues on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discr. Math., 14 (2020), 255–271. doi: 10.2298/AADM190924020W |
[10] | Z. H. Yang, W. M. Qian, W. Zhang, Y. M. Chu. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77–93. |
[11] | G. E. Andrews, R. Askey, R. Roy, Special functions, In: Encyclopedia of mathematics and its applications, Cambridge: Cambridge University Press, 70 (1999). |
[12] | Y. X. Li, A. Rauf, M. Naeem, M. A. Binyamin, A. Aslam, Valency-based topological properties of linear hexagonal chain and hammer-like benzenoid, Complexity, 2021 (2021), 9939469. |
[13] | Z. H. Yang, W. M. Qian, Y. M. Chu, W. Zhang, On rational bounds for the gamma function, J. Inequal. Appl., 2017 (2017), 210. doi: 10.1186/s13660-017-1484-y |
[14] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 896483. |
[15] | E. Neuman, On Gauss lemniscate functions and lemniscatic mean Ⅱ, Math. Pannon., 23 (2012), 65–73. |
[16] | Y. X. Li, T. Muhammad, M. Bilal, M. A. Khan, A. Ahmadian, B. A. Pansera, Fractional simulation for Darcy-Forchheimer hybrid nanoliquid flow with partial slip over a spinning disk, Alex. Eng. J., 60 (2021), 4787–4796. doi: 10.1016/j.aej.2021.03.062 |
[17] | M. I. Khan, S. Kadry, Y. M. Chu, W. A. Khane, A. Kumar, Exploration of Lorentz force on a paraboloid stretched surface in flow of Ree-Eyring nanomaterial, J. Mater. Res. Technol., 9 (2020), 10265–10275. doi: 10.1016/j.jmrt.2020.07.017 |
[18] | J. E. Deng, C. P. Chen, Sharp Shafer-Fink type inequalities for Gauss lemniscate functions, J. Inequal. Appl., 2014 (2014), 35. doi: 10.1186/1029-242X-2014-35 |
[19] | J. Liu, C. P. Chen, Padé approximant related to inequalities for Gauss lemniscate functions, J. Inequal. Appl., 2016 (2016), 1–16. doi: 10.1186/s13660-015-0952-5 |
[20] | E. Neuman, Two-sided inequalities for the lemniscate functions, J. Inequalities Special Funct., 1 (2010), 1–7. |
[21] | E. Neuman, On lemniscate functions, Integr. Transf. Spec. F., 24 (2013), 164–171. |
[22] | M. J. Wei, Y. He, G. D. Wang, Shafer-Fink type inequalities for arc lemniscate functions, RACSAM, 114 (2020), 53. doi: 10.1007/s13398-020-00782-x |
[23] | Y. M. Chu, M. K. Wang, X. Y. Ma, Sharp bounds for Toader mean in terms of contraharmonic mean with applications, J. Math. Inequal., 7 (2013), 161–166. |
[24] | Y. M. Chu, M. K. Wang, Y. F. Qiu, X. Y. Ma, Sharp two parameter bounds for the logarithmic mean and the arithmetic-geometric mean of Gauss, J. Math. Inequal., 7 (2013), 349–355. |
[25] | M. Nowicka, A. Witkowski, Optimal bounds for the tangent and hyperbolic sine means Ⅱ, J. Math. Inequal., 14 (2020), 23–33. |
[26] | W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 57. doi: 10.1007/s13398-020-00784-9 |
[27] | W. M. Qian, X. H. Zhang, Y. M. Chu, Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means, J. Math. Inequal., 11 (2017), 121–127. |
[28] | Y. X. Li, M. H. Alshbool, Y. P. Lv, I. Khan, M. R. Khan, A. Issakhov, Heat and mass transfere in MHD Williamson nanofluid flow over an exponentially porous stretching surface, Case Stud. Therm. Eng., 26 (2021), 100975. doi: 10.1016/j.csite.2021.100975 |
[29] | W. F. Xiang, S. Y. Xu, J. W. Lu, Y. M. Li, Y. M. Chu, Z. Q. Zhang, Event-triggered filtering for discrete-time Markovian jump systems with additive time-varying delays, Appl. Math. Comput., 391 (2021), 125630. |
[30] | M. K. Wang, Y. M. Chu, Y. M. Li, W. Zhang, Asymptotic expansion and bounds for complete elliptic integrals, Math. Inequal. Appl., 23 (2020), 821–841. |
[31] | M. K. Wang, Y. M. Chu, Y. Q. Song, Asymptotical formulas for Gaussian and generalized hypergeometric functions, Appl. Math. Comput., 276 (2016), 44–60. |
[32] | M. K. Wang, H. H. Chu, Y. M. Chu, Precise bounds for the weighted Hölder mean of the complete $p$-elliptic integrals, J. Math. Anal. Appl., 480 (2019), 123388. doi: 10.1016/j.jmaa.2019.123388 |
[33] | H. H. Chu, T. H. Zhao, Y. M. Chu, Sharp bounds for the Toader mean of order $3$ in terms of arithmetic, quadratic and contraharmonic means, Math. Slovaca, 70 (2020), 1097–1112. doi: 10.1515/ms-2017-0417 |
[34] | W. M. Qian, Y. Y. Yang, H. W. Zhang, Y. M. Chu, Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 287. doi: 10.1186/s13660-019-2245-x |
[35] | W. M. Qian, Z. Y. He, H. W. Zhang, Y. M. Chu, Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetric mean, J. Inequal. Appl., 2019 (2019), 168. doi: 10.1186/s13660-019-2124-5 |
[36] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, New York: John Wiley & Sons, 1997. |