The research here was motivated by a number of recent studies on Hankel inequalities and sharp bounds. In this article, we define a new subclass of holomorphic convex functions that are related to tangent functions. We then derive geometric properties like the necessary and sufficient conditions, radius of convexity, growth, and distortion estimates for our defined function class. Furthermore, the sharp coefficient bounds, sharp Fekete-Szegö inequality, sharp 2nd order Hankel determinant, and Krushkal inequalities are given. Moreover, we calculate the sharp coefficient bounds, sharp Fekete-Szegö inequality, and sharp second-order Hankel determinant for the functions whose coefficients are logarithmic.
Citation: Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad. Sufficiency criteria for a class of convex functions connected with tangent function[J]. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906
The research here was motivated by a number of recent studies on Hankel inequalities and sharp bounds. In this article, we define a new subclass of holomorphic convex functions that are related to tangent functions. We then derive geometric properties like the necessary and sufficient conditions, radius of convexity, growth, and distortion estimates for our defined function class. Furthermore, the sharp coefficient bounds, sharp Fekete-Szegö inequality, sharp 2nd order Hankel determinant, and Krushkal inequalities are given. Moreover, we calculate the sharp coefficient bounds, sharp Fekete-Szegö inequality, and sharp second-order Hankel determinant for the functions whose coefficients are logarithmic.
[1] | K. S. Padmanabhan, R. Parvatham, Some applications of differential subordination, Bull. Aust. Math. Soc., 32 (1985), 321–330. https://doi.org/10.1017/S0004972700002410 doi: 10.1017/S0004972700002410 |
[2] | T. N. Shanmugam, Convolution and Differential subordination, Int. J. Math. Math. Sci., 12 (1989), 3498140. https://doi.org/10.1155/S0161171289000384 doi: 10.1155/S0161171289000384 |
[3] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, New York: International Press, 1992,157–169. |
[4] | W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polonici Math., 23 (1970), 159–177. |
[5] | K. Bano, M. Raza, Starlike functions associated with cosine function, Bull. Iran. Math. Soc., 47 (2021), 1513–1532. https://doi.org/10.1007/s41980-020-00456-9 doi: 10.1007/s41980-020-00456-9 |
[6] | A. Alotaibi, M. Arif, M. A. Alghamdi, S. Hussain, Starlikness associated with cosine hyperbolic function, Mathematics, 8 (2020), 1118. https://doi.org/10.3390/math8071118 doi: 10.3390/math8071118 |
[7] | R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. https://doi.org/10.1007/s40840-014-0026-8 doi: 10.1007/s40840-014-0026-8 |
[8] | N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45 (2019), 213–232. https://doi.org/10.1007/s41980-018-0127-5 doi: 10.1007/s41980-018-0127-5 |
[9] | L. A. Wani, A. Swaminathan, Starlike and convex functions associated with a Nephroid domain, Bull. Malays. Math. Sci. Soc., 44 (2021), 79–104. https://doi.org/10.1007/s40840-020-00935-6 doi: 10.1007/s40840-020-00935-6 |
[10] | S. S. Kumar, K. Arora, Starlike functions associated with a petal shaped domain, B. Korean Math. Soc., 59 (2022), 993–1010. https://doi.org/10.4134/BKMS.b210602 doi: 10.4134/BKMS.b210602 |
[11] | L. Shi, H. M. Srivastava, M. G. Khan, N. Khan, B. Ahmad, B. Khan, et al., Certain subclasses of analytic multivalent functions associated with petal-shape domain, Axioms, 10 (2021), 291. https://doi.org/10.3390/axioms10040291 doi: 10.3390/axioms10040291 |
[12] | P. Geol, S. S. Kumar, Certain class of starlike functions associated with modified sigmoid function, B. Malays. Math. Sci. Soc., 43 (2020), 957–991. |
[13] | M. G. Khan, B. Ahmad, G. Murugusundaramoorthy, R. Chinram, W. K. Mashwani, Applications of modified sigmoid functions to a class of starlike functions, J. Funct. Space, 2020 (2020), 8844814. https://doi.org/10.1155/2020/8844814 doi: 10.1155/2020/8844814 |
[14] | M. G. Khan, N. E. Cho, T. G. Shaba, B. Ahmad, W. K. Mashwani, Coefficient functionals for a class of bounded turning functions related to modified sigmoid function, AIMS Mathematics, 7 (2022), 3133–3149. https://doi.org/10.3934/math.2022173 doi: 10.3934/math.2022173 |
[15] | J. Sokol, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat, 19 (1996), 101–105. |
[16] | K. Ullah, S. Zainab, M. Arif, M. Darus, M. Shutaywi, Radius problems for starlike functions associated with the Tan hyperbolic function, J. Funct. Space, 2021 (2021), 9967640. https://doi.org/10.1155/2021/9967640 doi: 10.1155/2021/9967640 |
[17] | K. Ullah, H. M. Srivastava, A. Rafiq, M. Arif, S. Arjika, A study of sharp coefficient bounds for a new subfamily of starlike functions, J. Inequal Appl., 2021 (2021), 194. https://doi.org/10.1186/s13660-021-02729-1 doi: 10.1186/s13660-021-02729-1 |
[18] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. |
[19] | P. Dienes, The Taylor series: An introduction to the theory of functions of a complex variable, New York: Dover, 1957. |
[20] | M. G. Khan, B. Khan, F. M. O. Tawfiq, J. S. Ro, Zalcman functional and majorization results for certain subfamilies of holomorphic functions, Axioms, 12 (2023), 868. https://doi.org/10.3390/axioms12090868 doi: 10.3390/axioms12090868 |
[21] | M. G. Khan, W. K. Mashwani, J. S. Ro, B. Ahmad, Problems concerning sharp coefficient functionals of bounded turning functions, AIMS Mathematics, 8 (2023), 27396–27413. https://doi.org/10.3934/math.20231402 doi: 10.3934/math.20231402 |
[22] | M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function, AIMS Mathematics, 8 (2023), 21993–22008. https://doi.org/10.3934/math.20231121 doi: 10.3934/math.20231121 |
[23] | F. Keough, E. Merkes, A coefficient inequality for certain subclasses of analytic functions. Proc. Am. Math. Soc., 20 (1969), 8–12. |
[24] | M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), 1615–1630. https://doi.org/10.1515/math-2019-0132 doi: 10.1515/math-2019-0132 |
[25] | V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, Comptes Rendus Math., 353 (2015), 505–510. https://doi.org/10.1016/j.crma.2015.03.003 doi: 10.1016/j.crma.2015.03.003 |
[26] | C. Pommerenke, Univalent functions, G öttingen, Germany: Vandenhoeck and Ruprecht, 1975. |
[27] | R. J. Liber, E. J. Zlotkiewicz, Early cofficients of the inverse of a regular convex function, Proc. Am. Math. Soc., 85 (1982), 225–230. https://doi.org/10.1090/S0002-9939-1982-0652447-5 doi: 10.1090/S0002-9939-1982-0652447-5 |
[28] | S. K. Krushkal, A short geometric proof of the Zalcman and Bieberbach conjectures, arXiv: 1408.1948. |
[29] | G. Murugusundaramoorthy, M. G. Khan, B. Ahmad, V. K. Mashwani, T. Abdeljawad, Z. Salleh, Coefficient functionals for a class of bounded turning functions connected to three leaf function, J. Math. Comput. Sci., 28 (2023), 213–223. http://doi.org/10.22436/jmcs.028.03.01 doi: 10.22436/jmcs.028.03.01 |