Research article

Sharp estimate for starlikeness related to a tangent domain

  • Received: 18 February 2024 Revised: 07 June 2024 Accepted: 13 June 2024 Published: 26 June 2024
  • MSC : 05A30, 11B65, 30C45, 47B38

  • In the recent years, the study of the Hankel determinant problems have been widely investigated by many researchers. We were essentially motivated by the recent research going on with the Hankel determinant and other coefficient bounds problems. In this research article, we first considered the subclass of analytic starlike functions connected with the domain of the tangent function. We then derived the initial four sharp coefficient bounds, the sharp Fekete-Szegö inequality, and the sharp second and third order Hankel determinant for the defined class. Also, we derived sharp estimates like sharp coefficient bounds, Fekete-Szegö estimate, and sharp second order Hankel determinant for the functions having logarithmic coefficient and for the inverse coefficient, respectively, for the defined functions class.

    Citation: Mohammad Faisal Khan, Jongsuk Ro, Muhammad Ghaffar Khan. Sharp estimate for starlikeness related to a tangent domain[J]. AIMS Mathematics, 2024, 9(8): 20721-20741. doi: 10.3934/math.20241007

    Related Papers:

  • In the recent years, the study of the Hankel determinant problems have been widely investigated by many researchers. We were essentially motivated by the recent research going on with the Hankel determinant and other coefficient bounds problems. In this research article, we first considered the subclass of analytic starlike functions connected with the domain of the tangent function. We then derived the initial four sharp coefficient bounds, the sharp Fekete-Szegö inequality, and the sharp second and third order Hankel determinant for the defined class. Also, we derived sharp estimates like sharp coefficient bounds, Fekete-Szegö estimate, and sharp second order Hankel determinant for the functions having logarithmic coefficient and for the inverse coefficient, respectively, for the defined functions class.


    加载中


    [1] L. Bieberbach, Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsberichte Preussische Akademie der Wissenschaften., 138 (1916), 940–955.
    [2] L. De Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152. https://doi.org/10.1007/BF02392821 doi: 10.1007/BF02392821
    [3] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, 1992, 157169.
    [4] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polonici Math., 23 (1971), 159–177. https://doi.org/10.4064/ap-23-2-159-177 doi: 10.4064/ap-23-2-159-177
    [5] J. Sokól, S. Kanas, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105.
    [6] K. Arora, S. S. Kumar, Starlike functions associated with a petal shaped domain, Bull. Korean Math. Soc., 59 (2022), 993–1010. http://doi.org/10.4134/BKMS.b210602 doi: 10.4134/BKMS.b210602
    [7] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. http://doi.org/10.1007/s40840-014-0026-8 doi: 10.1007/s40840-014-0026-8
    [8] N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45 (2019), 213–232. https://doi.org/10.1007/s41980-018-0127-5 doi: 10.1007/s41980-018-0127-5
    [9] K. Bano, M. Raza, Starlike Functions Associated with Cosine Functions, Bull. Iran. Math. Soc., 47 (2021), 1513–1532. https://doi.org/10.1007/s41980-020-00456-9 doi: 10.1007/s41980-020-00456-9
    [10] I. Al-Shbeil, A. Saliu, A. Cãtaş, S. N. Malik, S. O. Oladejo, Some Geometrical Results Associated with Secant Hyperbolic Functions, Mathematics, 10 (2022), 2697. https://doi.org/10.3390/math10152697 doi: 10.3390/math10152697
    [11] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. https://doi.org/10.1090/S0002-9939-1969-0232926-9 doi: 10.1090/S0002-9939-1969-0232926-9
    [12] P. Dienes, The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable, New York: Dover, 1957.
    [13] J. W. Noonan, D. K. Thomas, On the Second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc., 22 (1976), 337–346.
    [14] W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc., 3 (1968), 77–94. https://doi.org/10.1112/plms/s3-18.1.77 doi: 10.1112/plms/s3-18.1.77
    [15] H. Orhan, N. Magesh, J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math., 40 (2016), 679–687. https://doi.org/10.3906/mat-1505-3 doi: 10.3906/mat-1505-3
    [16] M. G. Khan, B. Khan, F. M. O. Tawfiq, J.-S. Ro, Zalcman Functional and Majorization Results for Certain Subfamilies of Holomorphic Functions, Axioms, 12 (2023), 868. https://doi.org/10.3390/axioms12090868 doi: 10.3390/axioms12090868
    [17] M. G. Khan, W. K. Mashwani, J.-S. Ro, B. Ahmad, Problems concerning sharp coefficient functionals of bounded turning functions, AIMS Mathematics, 8 (2023), 27396–27413. https://doi.org/10.3934/math.20231402 doi: 10.3934/math.20231402
    [18] M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function, AIMS Mathematics, 8 (2023), 21993–22008. https://doi.org/10.3934/math.20231121 doi: 10.3934/math.20231121
    [19] M. G. Khan, B. Ahmad, G. Murugusundaramoorthy, R. Chinram, W. K. Mashwani, Applications of Modified Sigmoid Functions to a Class of Starlike Functions, J. Funct. Space, 2020 (2020), 8844814. https://doi.org/10.1155/2020/8844814 doi: 10.1155/2020/8844814
    [20] M. G. Khan, N. E. Cho, T. G. Shaba, B. Ahmad, W. K. Mashwani, Coefficient functionals for a class of bounded turning functions related to modified sigmoid function, AIMS Mathematics, 7 (2022), 3133–3149. https://doi.org/10.3934/math.2022173 doi: 10.3934/math.2022173
    [21] G. Murugusundaramoorthy, M. G. Khan, B. Ahmad, V. K. Mashwani, T. Abdeljawad, Z. Salleh, Coefficient functionals for a class of bounded turning functions connected to three leaf function, J. Math. Comput. Sci., 28 (2023), 213–223. https://doi.org/10.22436/jmcs.028.03.01 doi: 10.22436/jmcs.028.03.01
    [22] A. Ahmad, J. Gong, I. Al-Shbeil, A. Rasheed, A. Ali, S. Hussain, Analytic Functions Related to a Balloon-Shaped Domain, Fractal Fract., 7 (2023), 865. https://doi.org/10.3390/fractalfract7120865 doi: 10.3390/fractalfract7120865
    [23] K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afr. Math., 27 (2016), 923–939. https://doi.org/10.1007/s13370-015-0387-7 doi: 10.1007/s13370-015-0387-7
    [24] M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), 1615–1630. https://doi.org/10.1515/math-2019-0132 doi: 10.1515/math-2019-0132
    [25] V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, Comptes Rendus Math., 353 (2015), 505–510. https://doi.org/10.1016/j.crma.2015.03.003 doi: 10.1016/j.crma.2015.03.003
    [26] O. S. Kwon, A. Lecko, Y. J. Sim, On the fourth coefficient of functions in the Carathéodory class, Comput. Methods Funct. Theory, 18 (2018), 307–314.
    [27] B. Kowalczyk, A. Lecko, Second Hankel determinant of logarithmic coefficients of convex and starlike functions, Bull. Aust. Math. Soc., 105 (2022), 458–467. https://doi.org/10.1017/S0004972721000836 doi: 10.1017/S0004972721000836
    [28] B. Kowalczyk, A. Lecko, Second Hankel Determinant of logarithmic coefficients of convex and starlike functions of order alpha, Bull. Malays. Math. Sci. Soc., 45 (2022), 727–740. https://doi.org/10.1007/s40840-021-01217-5 doi: 10.1007/s40840-021-01217-5
    [29] J. G. Krzyz, R. J. Libera, E. Zlotkiewicz, Coefficients of inverse of regular starlike functions, Ann. Univ. Mariae. Curie-Skłodowska, 33 (1979), 103–109.
    [30] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., 26 (2003), 63–71.
    [31] L. Shi, M. Arif, M. Abbas, M. Ihsan, Sharp bounds of Hankel determinant for the inverse functions on a subclass of bounded turning functions, Mediterr. J. Math., 20 (2023), 156. https://doi.org/10.1007/s00009-023-02371-9 doi: 10.1007/s00009-023-02371-9
    [32] L. Shi, H. M. Srivastava, A. Rafiq, M. Arif, M. Ihsan, Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential function, Mathematics, 10 (2022), 3429. https://doi.org/10.3390/math10193429 doi: 10.3390/math10193429
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(639) PDF downloads(41) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog