Citation: Mohammad Faisal Khan, Jongsuk Ro, Muhammad Ghaffar Khan. Sharp estimate for starlikeness related to a tangent domain[J]. AIMS Mathematics, 2024, 9(8): 20721-20741. doi: 10.3934/math.20241007
[1] | L. Bieberbach, Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsberichte Preussische Akademie der Wissenschaften., 138 (1916), 940–955. |
[2] | L. De Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152. https://doi.org/10.1007/BF02392821 doi: 10.1007/BF02392821 |
[3] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, 1992, 157169. |
[4] | W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polonici Math., 23 (1971), 159–177. https://doi.org/10.4064/ap-23-2-159-177 doi: 10.4064/ap-23-2-159-177 |
[5] | J. Sokól, S. Kanas, Radius of convexity of some subclasses of strongly starlike functions, Zesz. Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105. |
[6] | K. Arora, S. S. Kumar, Starlike functions associated with a petal shaped domain, Bull. Korean Math. Soc., 59 (2022), 993–1010. http://doi.org/10.4134/BKMS.b210602 doi: 10.4134/BKMS.b210602 |
[7] | R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), 365–386. http://doi.org/10.1007/s40840-014-0026-8 doi: 10.1007/s40840-014-0026-8 |
[8] | N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 45 (2019), 213–232. https://doi.org/10.1007/s41980-018-0127-5 doi: 10.1007/s41980-018-0127-5 |
[9] | K. Bano, M. Raza, Starlike Functions Associated with Cosine Functions, Bull. Iran. Math. Soc., 47 (2021), 1513–1532. https://doi.org/10.1007/s41980-020-00456-9 doi: 10.1007/s41980-020-00456-9 |
[10] | I. Al-Shbeil, A. Saliu, A. Cãtaş, S. N. Malik, S. O. Oladejo, Some Geometrical Results Associated with Secant Hyperbolic Functions, Mathematics, 10 (2022), 2697. https://doi.org/10.3390/math10152697 doi: 10.3390/math10152697 |
[11] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. https://doi.org/10.1090/S0002-9939-1969-0232926-9 doi: 10.1090/S0002-9939-1969-0232926-9 |
[12] | P. Dienes, The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable, New York: Dover, 1957. |
[13] | J. W. Noonan, D. K. Thomas, On the Second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc., 22 (1976), 337–346. |
[14] | W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc., 3 (1968), 77–94. https://doi.org/10.1112/plms/s3-18.1.77 doi: 10.1112/plms/s3-18.1.77 |
[15] | H. Orhan, N. Magesh, J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math., 40 (2016), 679–687. https://doi.org/10.3906/mat-1505-3 doi: 10.3906/mat-1505-3 |
[16] | M. G. Khan, B. Khan, F. M. O. Tawfiq, J.-S. Ro, Zalcman Functional and Majorization Results for Certain Subfamilies of Holomorphic Functions, Axioms, 12 (2023), 868. https://doi.org/10.3390/axioms12090868 doi: 10.3390/axioms12090868 |
[17] | M. G. Khan, W. K. Mashwani, J.-S. Ro, B. Ahmad, Problems concerning sharp coefficient functionals of bounded turning functions, AIMS Mathematics, 8 (2023), 27396–27413. https://doi.org/10.3934/math.20231402 doi: 10.3934/math.20231402 |
[18] | M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function, AIMS Mathematics, 8 (2023), 21993–22008. https://doi.org/10.3934/math.20231121 doi: 10.3934/math.20231121 |
[19] | M. G. Khan, B. Ahmad, G. Murugusundaramoorthy, R. Chinram, W. K. Mashwani, Applications of Modified Sigmoid Functions to a Class of Starlike Functions, J. Funct. Space, 2020 (2020), 8844814. https://doi.org/10.1155/2020/8844814 doi: 10.1155/2020/8844814 |
[20] | M. G. Khan, N. E. Cho, T. G. Shaba, B. Ahmad, W. K. Mashwani, Coefficient functionals for a class of bounded turning functions related to modified sigmoid function, AIMS Mathematics, 7 (2022), 3133–3149. https://doi.org/10.3934/math.2022173 doi: 10.3934/math.2022173 |
[21] | G. Murugusundaramoorthy, M. G. Khan, B. Ahmad, V. K. Mashwani, T. Abdeljawad, Z. Salleh, Coefficient functionals for a class of bounded turning functions connected to three leaf function, J. Math. Comput. Sci., 28 (2023), 213–223. https://doi.org/10.22436/jmcs.028.03.01 doi: 10.22436/jmcs.028.03.01 |
[22] | A. Ahmad, J. Gong, I. Al-Shbeil, A. Rasheed, A. Ali, S. Hussain, Analytic Functions Related to a Balloon-Shaped Domain, Fractal Fract., 7 (2023), 865. https://doi.org/10.3390/fractalfract7120865 doi: 10.3390/fractalfract7120865 |
[23] | K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afr. Math., 27 (2016), 923–939. https://doi.org/10.1007/s13370-015-0387-7 doi: 10.1007/s13370-015-0387-7 |
[24] | M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), 1615–1630. https://doi.org/10.1515/math-2019-0132 doi: 10.1515/math-2019-0132 |
[25] | V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, Comptes Rendus Math., 353 (2015), 505–510. https://doi.org/10.1016/j.crma.2015.03.003 doi: 10.1016/j.crma.2015.03.003 |
[26] | O. S. Kwon, A. Lecko, Y. J. Sim, On the fourth coefficient of functions in the Carathéodory class, Comput. Methods Funct. Theory, 18 (2018), 307–314. |
[27] | B. Kowalczyk, A. Lecko, Second Hankel determinant of logarithmic coefficients of convex and starlike functions, Bull. Aust. Math. Soc., 105 (2022), 458–467. https://doi.org/10.1017/S0004972721000836 doi: 10.1017/S0004972721000836 |
[28] | B. Kowalczyk, A. Lecko, Second Hankel Determinant of logarithmic coefficients of convex and starlike functions of order alpha, Bull. Malays. Math. Sci. Soc., 45 (2022), 727–740. https://doi.org/10.1007/s40840-021-01217-5 doi: 10.1007/s40840-021-01217-5 |
[29] | J. G. Krzyz, R. J. Libera, E. Zlotkiewicz, Coefficients of inverse of regular starlike functions, Ann. Univ. Mariae. Curie-Skłodowska, 33 (1979), 103–109. |
[30] | R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., 26 (2003), 63–71. |
[31] | L. Shi, M. Arif, M. Abbas, M. Ihsan, Sharp bounds of Hankel determinant for the inverse functions on a subclass of bounded turning functions, Mediterr. J. Math., 20 (2023), 156. https://doi.org/10.1007/s00009-023-02371-9 doi: 10.1007/s00009-023-02371-9 |
[32] | L. Shi, H. M. Srivastava, A. Rafiq, M. Arif, M. Ihsan, Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential function, Mathematics, 10 (2022), 3429. https://doi.org/10.3390/math10193429 doi: 10.3390/math10193429 |