Citation: Abdelatif Boutiara, Jehad Alzabut, Hasib Khan, Saim Ahmed, Ahmad Taher Azar. Qualitative analytical results of complex order nonlinear fractional differential equations with robust control scheme[J]. AIMS Mathematics, 2024, 9(8): 20692-20720. doi: 10.3934/math.20241006
[1] | S. Samko, A. Kilbas, O. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach Science Publishers, 1993. |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[3] | I. Podlubny, Fractional differential equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, Vol. 198, Academic Press, 1999. |
[4] | S. Treanta, C. Varsan, Linear higher order PDEs of Hamilton-Jacobi and parabolic type, Math. Rep., 16 (2014), 319–329. |
[5] | S. Treanţǎ, C. Vârsan, Weak small controls and approximations associated with controllable affine control systems, J. Differ. Equations, 255 (2013), 1867–1882. https://doi.org/10.1016/j.jde.2013.05.028 doi: 10.1016/j.jde.2013.05.028 |
[6] | M. M. Doroftei, S. Treanta, Higher order hyperbolic equations involving a finite set of derivations, Balk. J. Geom. Appl., 17 (2012), 22–33. |
[7] | M. Sher, A. Khan, K. Shah, T. Abdeljawad, Fractional-order sine-Gordon equation involving nonsingular derivative, Fractals, 31 (2022), 2340007. https://doi.org/10.1142/S0218348X23400078 doi: 10.1142/S0218348X23400078 |
[8] | P. Bedi, A. Kumar, G. Deora, A. Khan, T. Abdeljawad, An investigation into the controllability of multivalued stochastic fractional differential inclusions, Chaos Soliton. Fract.: X, 12 (2024), 100107. https://doi.org/10.1016/j.csfx.2024.100107 doi: 10.1016/j.csfx.2024.100107 |
[9] | K. Kaushik, A. Kumar, A. Khan, T. Abdeljawad, Existence of solutions by fixed point theorem of general delay fractional differential equation with $ p $-Laplacian operator, AIMS Math., 8 (2023), 10160–10176. https://doi.org/10.3934/math.2023514 doi: 10.3934/math.2023514 |
[10] | H. Khan, J. Alzabut, A. Shah, Z. Y. He, S. Etemad, S. Rezapour, et al., On fractal-fractional waterborne disease model: a study on theoretical and numerical aspects of solutions via simulations, Fractals, 31 (2023), 2340055. https://doi.org/10.1142/S0218348X23400558 doi: 10.1142/S0218348X23400558 |
[11] | H. Khan, J. Alzabut, D. Baleanu, G. Alobaidi, M. Rehman, Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application, AIMS Math., 8 (2023), 6609–6625. https://doi.org/10.3934/math.2023334 doi: 10.3934/math.2023334 |
[12] | A. Boutiara, S. Etemad, J. Alzabut, A. Hussain, M. Subramanian, S. Rezapour, On a nonlinear sequential four-point fractional $q$-difference equation involving q-integral operators in boundary conditions along with stability criteria, Adv. Differ. Equ., 2021 (2021), 367. https://doi.org/10.1186/s13662-021-03525-3 doi: 10.1186/s13662-021-03525-3 |
[13] | A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, Second-order predefined-time sliding-mode control of fractional-order systems, Asian J. Control, 24 (2022), 74–82. https://doi.org/10.1002/asjc.2447 doi: 10.1002/asjc.2447 |
[14] | A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Automat. Contr., 57 (2011), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869 |
[15] | Y. Feng, X. Yu, F. Han, On nonsingular terminal sliding-mode control of nonlinear systems, Automatica, 49 (2013), 1715–1722. https://doi.org/10.1016/j.automatica.2013.01.051 doi: 10.1016/j.automatica.2013.01.051 |
[16] | H. Li, L. Dou, Z. Su, Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator, Int. J. Syst. Sci., 44 (2011), 401–415. https://doi.org/10.1080/00207721.2011.601348 doi: 10.1080/00207721.2011.601348 |
[17] | S. Ahmed, A. T. Azar, Adaptive fractional tracking control of robotic manipulator using fixed-time method, Complex Intell. Syst., 10 (2023), 369–382. https://doi.org/10.1007/s40747-023-01164-7 doi: 10.1007/s40747-023-01164-7 |
[18] | J. D. Sánchez-Torres, M. Defoort, A. J. Munoz-Vázquez, A second order sliding mode controller with predefined-time convergence, 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2018. https://doi.org/10.1109/ICEEE.2018.8533952 |
[19] | M. Zubair, I. A. Rana, Y. Islam, S. A. Khan, Variable structure based control for the chemotherapy of brain tumor, IEEE Access, 9 (2021), 107333–107346. https://doi.org/10.1109/ACCESS.2021.3091632 doi: 10.1109/ACCESS.2021.3091632 |
[20] | S. Ahmad, NasimUllah, N. Ahmed, M. Ilyas, W. Khan, Super twisting sliding mode control algorithm for developing artificial pancreas in type 1 diabetes patients, Biomed. Signal Proces. Control, 38 (2017), 200–211. https://doi.org/10.1016/j.bspc.2017.06.009 doi: 10.1016/j.bspc.2017.06.009 |
[21] | S. Ahmed, A. T. Azar, I. K. Ibraheem, Model-free scheme using time delay estimation with fixed-time FSMC for the nonlinear robot dynamics, AIMS Math., 9 (2024), 9989–10009. https://doi.org/10.3934/math.2024489 doi: 10.3934/math.2024489 |
[22] | S. Ahmed, A. T. Azar, I. K. Ibraheem, Nonlinear system controlled using novel adaptive fixed-time SMC, AIMS Math., 9 (2024), 7895–7916. https://doi.org/10.3934/math.2024384 doi: 10.3934/math.2024384 |
[23] | V. Parra-Vega, Second order sliding mode control for robot arms with time base generators for finite-time tracking, Dynam. Control, 11 (2001), 175–186. https://doi.org/10.1023/A:1012535929651 doi: 10.1023/A:1012535929651 |
[24] | V. Parra-Vbga, G. Hirzinger, TBG sliding surfaces for perfect tracking of robot manipulators, In: X. Yu, J. X. Xu, Advances in variable structure systems: analysis, integration and applications, (2000), 115–124. |
[25] | T. Tsuji, P. G. Morasso, M. Kaneko, Feedback control of nonholonomic mobile robots using time base generator, Proceedings of IEEE International Conference on Robotics and Automation, 2 (1995), 1385–1390. https://doi.org/10.1109/ROBOT.1995.525471 doi: 10.1109/ROBOT.1995.525471 |
[26] | A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, S. Boulaaras, Predefined-time convergence in fractional-order systems, Chaos Soliton. Fract., 143 (2021), 110571. https://doi.org/10.1016/j.chaos.2020.110571 doi: 10.1016/j.chaos.2020.110571 |
[27] | R. Aldana-López, D. Gómez-Gutiérrez, E. Jiménez-Rodríguez, J. D. Sánchez-Torres, M. Defoort, Enhancing the settling time estimation of a class of fixed-time stable systems, Int. J. Robust Nonlinear Control, 29 (2019), 4135–4148. https://doi.org/10.1002/rnc.4600 doi: 10.1002/rnc.4600 |
[28] | Y. Islam, I. Ahmad, M. Zubair, A. Islam, Adaptive terminal and supertwisting sliding mode controllers for acute leukemia therapy, Biomed. Signal Proces. Control, 71 (2022), 103121. https://doi.org/10.1016/j.bspc.2021.103121 doi: 10.1016/j.bspc.2021.103121 |
[29] | M. Agarwal, A. S. Bhadauria, Mathematical modeling and analysis of leukemia: effect of external engineered T cells infusion, Appl. Appl. Math.: Int. J., 10 (2015), 249–266. |
[30] | H. Khan, K. Alam, H. Gulzar, S. Etemad, S. Rezapour, A case study of fractal-fractional tuberculosis model in China: existence and stability theories along with numerical simulations, Math. Comput. Simul., 198 (2022), 455–473. https://doi.org/10.1016/j.matcom.2022.03.009 doi: 10.1016/j.matcom.2022.03.009 |
[31] | Y. Islam, I. Ahmad, M. Zubair, K. Shahzad, Double integral sliding mode control of leukemia therapy, Biomed. Signal Proces. Control, 61 (2020), 102046. https://doi.org/10.1016/j.bspc.2020.102046 doi: 10.1016/j.bspc.2020.102046 |
[32] | E. K. Afenya, C. P. Calderón, Normal cell decline and inhibition in acute leukemia: a biomathematical modeling approach, Cancer Detect. Prev., 20 (1996), 171–179. |
[33] | A. Boutiara, M. Benbachir, Existence and uniqueness results to a fractional $q$-difference coupled system with integral boundary conditions via topological degree theory, Int. J. Nonlinear Anal. Appl., 13 (2022), 3197–3211. https://doi.org/10.22075/ijnaa.2021.21951.2306 doi: 10.22075/ijnaa.2021.21951.2306 |
[34] | R. P. Agarwal, D. O'Regan, Toplogical degree theory and its applications, Tylor and Francis, 2006. |
[35] | A. Boutiara, Multi-term fractional $q$-difference equations with $q$-integral boundary conditions via topological degree theory, Commun. Optim. Theory, 2021 (2021), 1–16. https://doi.org/10.23952/cot.2021.1 doi: 10.23952/cot.2021.1 |
[36] | J. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conference Series in Mathematics, American Mathematical Society, Vol. 40, 1979. https://doi.org/10.1090/cbms/040 |
[37] | J. Sun, Y. Zhao, Multiplicity of positive solutions of a class of nonlinear fractional differential equations, Comput. Math. Appl., 49 (2005), 73–80. https://doi.org/10.1016/j.camwa.2005.01.006 doi: 10.1016/j.camwa.2005.01.006 |
[38] | L. Xie, J. Zhou, H. Deng, Y. He, Existence and stability of solution for multi-order nonlinear fractional differential equations, AIMS Math., 7 (2022), 16440–16448. https://doi.org/10.3934/math.2022899 doi: 10.3934/math.2022899 |
[39] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006 |
[40] | S. Harikrishnana, E. M. Elsayed, K. Kanagarajan, D. Vivekd, A study of Hilfer-Katugampola type pantograph equations with complex order, Examples Counterexamples, 2 (2022), 100045. https://doi.org/10.1016/j.exco.2021.100045 doi: 10.1016/j.exco.2021.100045 |
[41] | S. Itoh, Random fixed point theorems with applications to random differential equations in Banach spaces, J. Math. Anal. Appl., 67 (1979), 261–273. |
[42] | H. W. Engl, A general stochastic fixed-point theorem for continuous random operators on stochastic domains, J. Math. Anal. Appl., 66 (1978), 220–231. https://doi.org/10.1016/0022-247X(78)90279-2 doi: 10.1016/0022-247X(78)90279-2 |
[43] | J. Banas̀, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York, 1980. |
[44] | H. R. Heinz, On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351–1371. https://doi.org/10.1016/0362-546X(83)90006-8 doi: 10.1016/0362-546X(83)90006-8 |
[45] | T. A. Faree, S. K. Panchal, Existence of solution for impulsive fractional differential equations via topological degree method, J. Korean Soc. Ind. Appl. Math., 25 (2021), 16–25. https://doi.org/10.12941/jksiam.2021.25.016 doi: 10.12941/jksiam.2021.25.016 |
[46] | Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, 2 Eds., World Scientific, 2017. https://doi.org/10.1142/10238 |
[47] | H. Khan, S. Ahmed, J. Alzabut, A. T. Azar, A generalized coupled system of fractional differential equations with application to finite time sliding mode control for leukemia therapy, Chaos Soliton. Fract., 174 (2023), 113901. https://doi.org/10.1016/j.chaos.2023.113901 doi: 10.1016/j.chaos.2023.113901 |
[48] | S. Ahmed, A. T. Azar, M. Abdel-Aty, H. Khan, J. Alzabut, A nonlinear system of hybrid fractional differential equations with application to fixed time sliding mode control for leukemia therapy, Ain Shams Eng. J., 15 (2024), 102566. https://doi.org/10.1016/j.asej.2023.102566 doi: 10.1016/j.asej.2023.102566 |