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Abstract: In this manuscript, our work was about a qualitative study for a class of multi-complex
orders nonlinear fractional differential equations (FDEs). Our methodology utilized the topological
degree theory and studied a novel operator tailored for non-singular FDEs with T-Riemann-Liouville
(T-RL) fractional order derivatives. The primary objective was to prove the existence and uniqueness
of solutions for both initial and boundary value problems within the intricated framework. With
the help of topological degree theory, we contributed to a wider understanding of the structural
aspects governing the behavior of the considered FDE. The novel operator proposing for non-singular
FDEs added a unique dimension to our analytical problem, offering a versatile and effective means
of addressing the challenges posed by these complex systems for their theoretical analysis. For
the practical implications of our theoretical framework, we presented two concrete examples that
reinforced and elucidated the key concepts introduced. These examples underscored our approach’s
viability and highlighted its potential applications in diverse scientific and engineering domains.
Through this comprehensive exploration, we aimed to contribute significantly to advancing the
theoretical foundation related to the study of multi-complex nonlinear FDEs. Moreover, a fixed-
time terminal sliding mode control (TSMC) has been developed. This proposed control strategy for
eliminating leukemic cells while maintaining normal cells was based on a chemotherapeutic treatment
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that was not only effective but also widely acknowledged to be safe. This strategy was evaluated using
the fixed-time Lyapunov stability theory, and simulations were included to illustrate its performance in
terms of tracking and convergence.

Keywords: T-Riemann-Liouville fractional derivatives; topological degree theory; fixed point
theorem; control scheme; leukemia model
Mathematics Subject Classification: 34A08

1. Introduction

Fractional calculus, an expansion of classical calculus, investigates derivatives and integrals of any
order, advancing a robust method for recognizing complex physical phenomena such as anomalous
diffusion, wave propagation, and dynamical systems. Unlike traditional calculus, which is limited to
positive integers, fractional calculus extends the opportunity to include non-integer orders, aiding the
analysis of nonlocal events and memory effects [1–3].

Fractional differential equations (FDEs) are an important branch of mathematics used to study
various natural processes. They are composed by considering derivatives of non-integer order and
are used to describe a range of phenomena, including anomalous diffusion, viscoelasticity, and more.
Existence and uniqueness of the solution for FDEs is a crucial topic that has been studied extensively
in recent years. Indeed, establishing the existence and uniqueness of the solution can be a challenging
task due to the properties of fractional derivatives. The most common approach to such problems is
to analyze the properties of the equations, check if the equations satisfy certain conditions in order to
determine the solvability of the equations, and then use the appropriate methods to find their solutions.
Differential and integral equations have been extensively studied in the past and many methods have
been developed to deal with them [4–6]. These methods have been classified into two portions
including analytical techniques and numerical methods. Analytical methods are based on algebraic,
functional analysis and calculus tools and can produce exact solutions in certain cases. For the details,
readers can see the recent development in the works [7–9]. Therefore, existence and uniqueness (EU)
are the essential factors in solving FDEs, which have been extensively studied by different researchers
using a variety of approaches. Classical fixed point (FP) theory has been used to establish the existence
and uniqueness of solutions for nonlinear FDEs [10–12].

The research focuses on controlling a nonlinear leukemia model to prevent leukemia cell spread.
Sliding mode control (SMC) is used for this purpose. SMC is a nonlinear control method that can
maintain stability even in model uncertainties. It has a simple structure that remains consistent
across different parameters and is resistant to noise and disturbances [13, 14]. Although chattering
is a common issue with SMCs, it can be significantly reduced using higher-order SMCs, saturation
approach, and continuous control methods [15–18]. These approaches ensure rapid stabilization and
convergence of the system. Furthermore, SMC has been employed to improve the performance of
the Euler-Lagrange system, control brain tumors with chemotherapy, regulate artificial pancreases in
individuals with diabetes, and other applications [19–22]. Finite-time SMC has been designed to obtain
convergence within a finite settling time. However, the finite-time system’s convergence is so sensitive
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to the beginning values of the nonlinear system that a higher initial condition for the nonlinear system
would cause the system to converge more slowly [23–25]. This limitation has led to the exploration of
alternative methods, and one such novel approach is fixed-time stability. This unique concept can be
used to find the convergence time regardless of the initial conditions [26, 27].

A class of disorders known as cancer is brought on by leukemic cells that grow uncontrollably
and infect nearby normal cells. Leukemia, sometimes known as “cancer of the bone marrow”, is a
kind of cancer. Blood cells are formed by bone marrow [28]. White blood cells are vital for fighting
infection and sickness, red blood cells transport oxygen, and platelets perform blood clotting [29]. The
abnormal multiplication of leukocytes, or white blood cells, is known as leukemia. Rapid production
of leukocytes displaces normal cells before they reach the circulation [31]. It is possible to distinguish
between acute and chronic leukemia subtypes by looking at the cancer’s growth. Normal cell counts
are drastically reduced if leukemic cells continue without being eliminated [32].

By applying these results, one can establish safe, compact estates (initial value problems (IVPs)
and boundary value problems (BVPs)) and narrow down their study to a few initial and boundary
value concerns. To get around this limitation and modify the techniques for IVPs and BVPs in a wider
sense, authors have been looking for a nonlinear analytic tool. One of the most significant and useful
methods, topological degree theory, operates under weak, compact circumstances as opposed to strong
ones. For a wide range of problems, the suggested approach offers incredibly basic prerequisites for
the presence of results. To get results, several authors have looked at a variety of challenges, including
linear and nonlinear fractional-order differential equations (FODEs) and differential equations (DEs).
To learn more about the degree theory of topological topology, see [30, 33–35].

Benchohra et al. [11] addressed the existence of the nonlinear implicit FDE with initial value
condition and performed an Ulam stability analysis on it:D℘

0+ζ(Z ) = K
(
Z , ζ(Z ),Da

0+ζ(Z )
)
, Z ∈ (0,T ],

Z 1−℘ζ(Z )
∣∣∣
Z =0

= ζ0, ζ0 ∈ R,

where Da
0+ is the Riemann-Liouville fractional derivative (RL-FD), K : (0,T ] × R × R → R is a

continuous function, and ℘ ∈ (0, 1).
Using the degree theory, Mawhin [36] developed relevant conclusions for the above BVPs in order

to deduce EU results:

ζ′′(Z ) +K
(
Z , ζ(Z ), ζ′(Z )

)
= 0, Z ∈ [0, π],

ζ(0) = ζ(π) = 0

and
ζ′′(Z ) +K(Z , ζ(Z )) = 0, Z ∈ [0, 1]
ζ(0) = ζ(1) = 0.

Krasnoselskii’s fixed point theorems (FPT) was utilized by Sun et al.’s [37] discussion about the
positive solution to the FDEs {

L(D)ζ = K(Z , ζ), 0 < Z < 1,
U (0) = 0,

where L(D) = Dςn − an−1Dςn−1 − · · · − a1Dς1 , 0 < ς1 < ς2 < · · · < ςn < 1, a j > 0 ( j = 1, 2, · · · , n − 1),
Dς j ( j = 1, 2, · · · , n) are RL-FDs.
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Xie et al. [38] discussed the stability and existence of solution for multi-order FDEs on infinite
interval [0,+∞).  L(D)ζ(Z ) = K

(
Z , ζ(Z ), RD℘n

0+ ζ(Z )
)
,Z ∈ J = [0,+∞),

Z 1−ςnζ(Z )
∣∣∣
Z =0

= 0,

where L(D) = RDςn
0+ − an−1

RDςn−1
0∗ − · · · − a1

RDς1
0+ , 0 < ς1 < ς2 < · · · < ςn < 1, n ∈ N+, a j ∈ R,

RDςn
0+ ,

RD0+
ς j RD

ςan
0+ ( j = 1, 2, · · · , n − 1) are RL-fractional derivatives, with ℘n < ς j and ς j + ℘n <

ςn ( j = 1, 2, · · · , n − 1) .
The previously mentioned study served as inspiration for the current work, which aims to analyze

the solutions of an FDE using the T-RL fractional operator. We propose a new method for condensing
maps, based on the degree theory of FDEs of the form, to extract sufficient criteria for the EU of
solutions to various kinds of value requirements posed by random FDEs.

L(D)ζ(Z , u) = K
(
Z , u, ζ(Z , u)

)
, Z ∈ Ib

a = [a, b], (1.1)

with the initial condition
(T(Z ) − T(a))1−ςn ζ(Z , u)

∣∣∣∣
Z =a

= 0, (1.2)

or the boundary conditions given by

℘ (T(Z ) − T(a))1−ςn ζ(Z , u)
∣∣∣∣
Z =a

= ν (T(Z ) − T(a))1−ςn ζ(Z , u)
∣∣∣∣
Z =b

+ λ, (1.3)

where L(D) = RLDςn − an−1
RLDςn−1 − · · · − aRL

1 Dς1 , 0 < ς1 < ς2 < · · · < ςn < 1, n ∈ N+, a j ∈ R,
RLDςn,T, RLDς j,T, ( j = 1, 2, · · · , n−1) are T–RL fractional derivatives based on T which is an increasing
function; T′(Z ) , 0 for all Z ∈ Ib

a , ℘, ν, λ ∈ R, and u ∈ Π; K : Ib
a × R × Π → R is a continuous

function; and ζ : Ib
a → R is continuous on Ib

a , in the measurable space (Π,A).
As far as we have discovered, no published works on FDEs having the operator L(D)-multi order

FD of one function with another function have been published. Our objective in this article is to use
the criteria (1.2) and (1.3), respectively, to determine the sufficient conditions for the EU of solutions
for FDE (1.1). This will enable us to respond to the query regarding the existence of solutions
for FDE (1.1). After (1.1) is transformed into integral equations with conditions (1.2) and (1.3),
accordingly, we use the Banach and topological degree theory to study the EU of solutions. For our
purposes, we convert (1.1) into integral equations using the conditions (1.2) and (1.3), respectively.
We design a sliding mode control to deliver faster error convergence and improved tracking trajectory
results at a fixed time. We then use the Lyapunov theorem to demonstrate the stability of a closed-
loop system. We provide computational work with examples to validate our investigation’s main
conclusions. The primary findings of [38] are expanded upon by the findings presented here.

2. Background material

Complete normed vector spaces are known as Banach spaces, after the Polish mathematician
Stefan Banach. They offer a foundation for functional analysis, which makes it easier to analyze
infinite-dimensional mathematical phenomena. Modern scientific and engineering achievements are
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based on applications across a wide range of domains, including quantum physics, signal processing,
optimization, partial differential equations, and more.

Here, we will begin by presenting some essential definitions and fundamental results that are crucial
for subsequent progress.

Let X := C(Ib
a ,R) be a Banach space of continuous real-valued functions on Ib

a = [a, b] ⊂ R.
ζ : Ib

a → R, in which the topological norm is given by:

‖ζ‖∞ = sup
{
|ζ(Z )|,Z ∈ Ib

a

}
.

Assume a weighted space C℘T(Ib
a) of functions ζ on Ib

a by

C℘T(Ib
a) =

{
ζ : (a, b]→ R; [T(Z ) − T(a)]1−℘ζ(Z ) ∈ X

}
, 0 ≤ ℘ < 1.

Clearly, C℘T(Ib
a) is a Banach space with norm

‖ζ‖C℘T =
∥∥∥[T(Z ) − T(a)]1−℘ζ(Z )

∥∥∥
X

= max
Z ∈Ib

a

∣∣∣[T(Z ) − T(a)]1−℘ζ(Z )
∣∣∣ . (2.1)

Here, we will explain the fractional calculus (FC) based on another function. Let T, ζ ∈ Cn such
that T is increasing and T′(Z ) , 0, for all Z ∈ Ib

a .

Definition 2.1. The T-RL FD of a function U of order ℘ ∈ (n − 1, n] is

D℘,T
a+ ζ(Z ) = Dn

TIn−℘,T
a+ ζ(Z ), (2.2)

where n = [%] + 1, n ∈ N, and Dn
T =

(
1

T′(Z )
d

dZ

)n
. The Eq (2.2) can be expressed as

Da,T
a+ ζ(Z ) =

1
Γ(n − ℘)

(
1

T′(Z )
d

dZ

)n ∫ Z

a
T′(ς)(T(Z ) − T(ς))n−℘−1ζ(ς)dς, (2.3)

and RLD℘;T
a+ (·) are called the T-RL fractional integral and derivative defined by (see [2])

I℘,Ta+ ζ(Z ) =
1

Γ(℘)

∫ Z

a
T′(ς)(T(Z ) − T(ς))℘−1ζ(ς)dς, (2.4)

and
RLD℘;T

a+ ζ (Z ) = Dn
T In−℘;T

a+ ζ (Z ) , (2.5)

respectively. Also, the T-Caputo FD is given by (see [39])

CD℘;T
a+ ζ (Z ) = In−℘;T

a+ Dn
T ζ (Z ) . (2.6)

Remark 2.2. For T (Z ) = Z , the relations (2.2), (2.5), and (2.6) get the classical fractional operators
in [2, 39].

Lemma 2.3. [39] Let ν > 0, ℘ > 0, then

(1) I℘,Ta+ (T(ς) − T(a))ν−1(Z ) =
Γ(ν)

Γ(ν+℘) (T(Z ) − T(a))ν+℘−1,

(2) D℘,T
a+ (T(ς) − T(a))ν−1(Z ) =

Γ(ν)
Γ(ν−℘) (T(Z ) − T(a))ν−℘−1.
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Lemma 2.4. [39] Let ζ ∈ Cn([a, b]), n − 1 < ℘ < n, then

(1) D℘,T
a+ I℘,Ta+ ζ(Z ) = ζ(Z ),

(2) I℘,Ta+ D℘,T
a+ ζ(Z ) = ζ(Z ) −

∑n
k=1

ζ[k−1](a+)
Γ(k−℘) (T(Z ) − T(a))k−℘,

where ζ[k](Z ) :=
(

1
T′(Z )

d
dZ

)k
ζ(Z ) on [a, b]. In particular, given ℘ ∈ (0, 1), one has

I℘,Ta+ D℘,T
a+ ζ(Z ) = ζ(Z ) − c(T(Z ) − T(a))℘−1,

where c is a constant.

Definition 2.5 ( [40]). The Gamma function for z ∈ C in Stirling’s asymptotic formulation is the
following:

Γ(z) = (2π)1/2zz− 1
2 e−z

[
1 + O

(
1
z

)]
, (| arg(z)| < π; |z| → ∞),

and

|Γ(a + ib)| = (2π)1/2|b|a−
1
2 e−a− z|b|

2

[
1 + O

(
1
z

)]
, (b→ ∞).

Let OR be the σ-algebra of Borel subsets of R, and η : Π → R is said to be measurable if, for any
B ∈ OR,

η−1(B) = {u ∈ Π : η(u) ∈ B} ⊂ A.

It is important to establish a jointly measurable map in order to achieve the goal of defining integrals
of sample routes of random processes.
S : Π × R → R is a random operator (RO) if S(u, ζ) is measurable in u for all ζ ∈ R, and

S(u)ζ = S(u, ζ) and S(u) is an RO on R. An RO S(u) on E is continuous (totally bounded, compact, or
completely continuous) if S(u, ζ) is continuous ( totally bounded, compact, or completely continuous)
in ζ for all u ∈ Π. The paper [41] provides information on totally continuous ROs in Banach spaces as
well as the features of these operators.

Definition 2.6 ( [42]). Let P(X) be a class of nonempty subsets of X and Y be a mapping from Π into
P(X). A mapping S : {(u,Z ) : u ∈ Π,Z ∈ Y(u)} → X is called an RO with stochastic domain Y if Y
is measurable (i.e., for all closed A ⊂ X, {u ∈ Π,Y(u) ∩ A , ∅} is measurable), and for all open B ⊂ X
and all Z ∈ X, {u ∈ Π : Z ∈ Y(u),S(u, y) ∈ B} is measurable.

Lemma 2.7 ( [14]). The system needs to ensure stable fixed-time convergence: Ẏ(x) =

f (x,Y), Y(0) = Y0, and the Lyapunov functional candidate V(Y) that satisfies

i. V(Y) = 0 ⇔ Y = 0,
ii. V̇(Y) ≤ −l1V(Y)k1 − l2V(Y)k2 ,

where l1, l2 > 0, 0 < k1 < 1, and k2 > 1. Therefore, the fixed-time T is computed as

T ≤
1

l1(1 − k1)
+

1
l2(k2 − 1)

. (2.7)

Here, we will talk about certain definitions and criteria for the measure of non-compactness, along
with the topological degree theory.
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Definition 2.8 ( [43]). The mapping h : MX → [0,∞) for the Kuratowski-measure of non-compactness
(KMN) is given by:

h(O) = inf
{
ε > 0 : O able to be covered by finitely several balls with radius ≤ ε

}
.

MX denoted the ball of all bounded mappings in X.

Properties 2.9 ( [43]). The KMN satisfies the following:

(1) h(P) = 0⇔ P is relatively compact,
(2) P ⊂ O⇒ h(P) ≤ h(O),
(3) h(P) = h(P) = h(conv(P)), where conv(P) and P symbolize the convex hull and the closure of P,

respectively,
(4) h(P + O) ≤ h(P) + h(O),
(5) h(λP) = |λ|h(P), λ ∈ R.

ForM ⊂ C(Ib
a , X), we define∫ Z

0
M(ς)dς =

{∫ Z

0
ζ(ς)dς : ζ ∈ M

}
, for Z ∈ Ib

a

whereM(ς) = {ζ(ς) ∈ X : ζ ∈ M}.

Proposition 2.10 ( [43, 44]). IfM ⊂ C(Ib
a ,X) is equi-continuous and bounded, so Z → h(M(Z )) is

continuous on Ib
a , and

h(M) = max
Z ∈Ib

a

h(M(Z )), h
(∫ Z

0
M(ς)dς

)
≤

∫ Z

0
h(M(ς))dς, for Z ∈ Ib

a .

Proposition 2.11 ( [43, 44]). M ⊂ C(Ib
a ,X) is relatively compact if, and only if,M is equi-continuous

and, for each Z ∈ Ib
a ,M(Z ) is a relatively compact set in X.

Proposition 2.12 ( [44]). Let {ζn}n≥1 be a sequence of Bochner integrable functions from Ib
a into X

with ‖ζn(Z )‖ ≤ m(Z ) for almost all Z ∈ Ib
a and each n ≥ 1, where m ∈ L1

(
Ib

a ,R+

)
, then the function

φ(Z ) = h ({ζn(Z ) : n ≥ 1}) belongs to L1
(
Ib

a ,R+

)
and satisfies:

h
({∫ Z

0
ζn(ς)dς : n ≥ 1

})
≤ 2

∫ Z

0
φ(ς)dς.

Definition 2.13 ( [45, 46]). Let V : P −→ X be a continuous bounded map and P ⊂ X. The operator
V is said to be h-Lipschitz if we find a constant κ ≥ 0 fulfilling the condition,

h(V (O)) ≤ κh(O), for each O ⊂ P.

Moreover, V is called a strict h-contraction if κ < 1.
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Definition 2.14 ( [45, 46]). The function V is called h-condensing if

h(V (O)) < h(O),

for each non-pre-compact and bounded subset O of P.
In other words,

h(V (O)) ≥ h(O), implies h(O) = 0.

Further, we have V : P −→ X is Lipschitz if we find κ > 0, such that

‖V (ζ) − V (ζ̄)‖ ≤ κ‖ζ − ζ̄‖, for any ζ, ζ̄ ∈ P.

If κ < 1, V is called a strict contraction.

For the next outcomes, we can refer to [3, 36].

Proposition 2.15. If V ,U : P −→ X are h-Lipschitz mappings with constants κ1 and κ2 respectively,
then V + U : P −→ X are h-Lipschitz with κ1 + κ2.

Proposition 2.16. A compact function V : P −→ X is h-Lipschitz with constant κ = 0.

Proposition 2.17. If V : P −→ X is Lipschitz with κ, then V is h-Lipschitz also with the identical
constant κ.

Theorem 2.18. LetW : P −→ X be h-condensing and

Ξ = {ζ ∈ X : there exist % ∈ [0, 1] such that x = %Wζ} .

If Ξ is a P bounded set in X, so there exists r > 0 such that Ξ ⊂ Or(0), then the degree

deg(I − %W,Or(0), 0) = 1, for all % ∈ [0, 1].

Consequently,W possesses at least one FP and the set of the FPs ofW lies in Or(0).

3. Findings of the article

We make some following assumptions for the main results of the article:

(A1) There exists constant L > 0 with

‖K(Z , ζ) − K(Z , ζ)‖ ≤ L‖ζ − ζ‖, for any Z ∈ Ib
a and for any ζ, ζ ∈ X.

(A2) For K , we have M1,N1 > 0, p ∈ (0, 1), such that

‖(T(Z ) − T(ς))1−ςnK(Z , ζ)‖ ≤ M1‖ζ‖
p
Cςn

T
+ N1 for every Z ∈ Ib

a and every ζ ∈ X.

(A3) For ζ ∈ X, there exist M2,N2 > 0, q ∈ (0, 1) such that

‖(T(Z ) − T(ς))1−ςnζ(Z , g)‖ ≤ M2‖ζ‖
q
Cςn

T
+ N2.
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(A4) For r > 0, there is a νr > 0 such that

℘(K(ς,M)) ≤ νr℘(M)

where Z ∈ Ib
a ,M ⊂ Br :=

{
‖ζ‖Cςn

T
≤ r : ζ ∈ Cςn

T (Ib
a ,R)

}
and

2νr(T(b) − T(a))ςn

Γ (ςn + 1)
< 1.

For simplicity, we define the following:

Q
ξ
T(Z , ς) =

T′(Z )(T(Z ) − T(ς))ξ−1

Γ(ξ)
, ξ > 0. (3.1)

As a starting point in this subsection, we will define the solutions to the problem (1.1)-(1.2). For
more details, see Benchohra et al. [11] and Xie et al. [38].

Definition 3.1. A function ζ ∈ Cςn
T (Ib

a) is a solution of the FDE (1.1) if ζ satisfies L(D)ζ(Z , u) =

K
(
Z , u, ζ(Z , u)

)
for a.e. Z ∈ Ib

a and the initial data (T(Z ) − T(a))1−ςn ζ(Z , u)
∣∣∣∣
Z =a

= 0.

The next lemma has an essential position in our results.

Lemma 3.2. For every h ∈ Cςn
T (Ib

a), the solution ζ of (1.1) with conditions (1.2) is given by

ζ(Z , u) =

∫ Z

0

T′(Z )(T(Z ) − T(ς))ςn−1

Γ (ςn)
K (ς, u, ζ(ς, u)) dς (3.2)

+

n−1∑
j=1

a j

∫ Z

0

T′(Z )(T(Z ) − T(ς))ςn−ς j−1

Γ
(
ςn − ς j

) ζ(ς, u)dς.

Alternatively, ζ can be expressed by

ζ(Z , u) = an−1Iςn−ςn−1;T
a+ ζ(Z , u) + · · · + a1Iςn−ς1;T

a+ ζ(Z , u) + Iςn;T
a+ K (Z , u, ζ(Z , u))

=

n−1∑
j=1

a jI
ςn−ς j;T
a+ ζ(Z , u) + Iςn;T

a+ K (Z , u, ζ(Z , u)) , ∀Z ∈ Ib
a .

(3.3)

By the virture of Lemma 3.2, we denote operators V ,U : Cςn
T (Ib

a) −→ Cςn
T (Ib

a) by:

V ζ(Z , u) =

n−1∑
j=1

a j

∫ Z

0
Q
ςn−ς j

T (Z , ς)ζ(ς, u)dς, Z ∈ Ib
a ,

and

U ζ(Z , u) =

∫ Z

0
Q
ςn
T (Z , ς)K (ς, u, ζ(ς, u)) dς, Z ∈ Ib

a .

Thus, (3.2) in Lemma 3.2 can be written as

Wζ(Z , u) = V ζ(Z , u) + U ζ(Z , u), Z ∈ Ib
a .

Since K is continuous,W is well-define and its FPs are solutions of (3.2) in Lemma 3.2.
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Lemma 3.3. V is Lipschitz with ΛK =
∑n−1

j=1 |a j|
(T(b)−T(a))ςn−ς j

Γ(ςn−ς j+1) L. Also, V fulfills that

‖V ζ‖Cςn
T
≤

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) (M2‖ζ‖
q
Cςn

T
+ N2),

for every U ∈ Cςn
T (Ib

a).

Proof. Next, we show V is Lipschitz with constant ΛK . Let ζ, ζ ∈ Cςn
T (Ib

a), then we get∣∣∣∣(T(Z ) − T(a))1−ςn
(
V ζ(Z ) − V ζ(Z )

)∣∣∣∣
≤ (T(Z ) − T(ς))1−ςn

n−1∑
j=1

|a j|

∫ Z

0
Q
ςn−ς j

T (Z , ς)
∣∣∣ζ(ς, u) − ζ(ς, g)

∣∣∣ dς
≤ (T(Z ) − T(a))1−ςn

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) ‖ζ − ζ‖
≤

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) ‖ζ − ζ‖Cςn
T
.

Then,

‖V ζ − V ζ‖Cςn
T
≤

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) ‖ζ − ζ‖Cςn
T
.

This implies, V : Cςn
T (Ib

a) −→ Cςn
T (Ib

a) is a Lipschitzian on Cςn
T (Ib

a) with the constant

ΛK =

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) .

By Proposition 2.17, V is h-Lipschitz with constant ΛK . Also, for the growth condition, we get∣∣∣∣(T(Z ) − T(a))1−ςn
(
V ζ(Z )

)∣∣∣∣ ≤ (T(Z ) − T(a))1−ςn

n−1∑
j=1

|a j|

∫ Z

0
Q
ςn−ς j

T (Z , ς) |K (ς, u, ζ(ς, u, ζ(ς)))| dς

≤

n−1∑
j=1

|a j|

∫ Z

0
Q
ςn−ς j

T (Z , ς)(M2‖ζ‖
q
Cςn

T
+ N2)ds

≤

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) (M2‖ζ‖
q
Cςn

T
+ N2).

This further implies that

‖V ζ‖Cςn
T
≤

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) (M2‖ζ‖
q
Cςn

T
+ N2).

�
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Lemma 3.4. The U is continuous and fulfills the growth condition given as below,

‖U ‖Cςn
T
≤

(T(b) − T(a))ςn

Γ (ςn + 1)
(M1‖ζ‖

p
Cςn

T
+ N1), for every ζ ∈ Cςn

T (Ib
a).

Proof. To demonstrate that U is continuous. Let {ζn}, ζ ∈ C
ςn
T (Ib

a) with lim
n→+∞

‖ζn−ζ‖ → 0. Evidently, we

show that {ζn} is a bounded subset of Cςn
T (Ib

a). Consequently, there is an r > 0 with ‖ζn‖Cςn
T
≤ r for any

n ≥ 1. Taking limit, we see ‖ζ‖Cςn
T
≤ r. It is simple to see that K(ς, u, ζn(ς)) → K(ς, u, ζ(ς)), as n →

+∞, because of the continuity of K . On the other hand, considering (A2), we get the next inequality:

(T(Z ) − T(a))1−ςn
(
Q
ςn
T (Z , ς)‖K(ς, u, ζn(ς, u)) − K(ς, u, ζ(ς, u))‖ ≤ 2Qςn

T (Z , ς)(M1rp + N1)
)
.

We remark that in the function ς 7→ 2(T(Z ) − T(a))1−ςnQ
ςn
T (Z , ς)(M1rp + N1) is Lebesgue integrable

over [a,Z ]. This fact in conjunction with the Lebesgue-dominated convergence theorem implies that∫ Z

0
Q
ςn
T (Z , ς)‖K(ς, u, ζn(ς, u)) − K(ς, u, ζ(ς, u))‖dς → 0 as n→ +∞.

It follows that ‖U ζn −U ζ‖ → 0 as n→ +∞. Thus, the operator U is continuous.
Under the growth condition, utilizing the hypothesis (A2) we obtain∣∣∣∣(T(Z ) − T(a))1−ςn

(
U ζ(Z , g)

)∣∣∣∣ ≤ (T(Z ) − T(a))1−ςn

∫ Z

0
Q
ςn
T (Z , ς)|K(ς, u, ζ(ς, u))|dς

≤

∫ Z

0
Q
ςn
T (Z , ς)(M1‖ζ‖

p
Cςn

T
+ N1)dς

≤
(T(b) − T(a))ςn

Γ (ςn + 1)
(M1‖ζ‖

p
Cςn

T
+ N1).

Therefore, we have

‖U ζ‖Cςn
T
≤

(T(b) − T(a))ςn

Γ (ςn + 1)
(M1‖ζ‖

p
Cςn

T
+ N1). (3.4)

�

Lemma 3.5. The operator U : Cςn
T (Ib

a) −→ Cςn
T (Ib

a) is compact. Thus, U is h-Lipschitz with 0 constant.

Proof. In order to prove the compactness of U , with a bounded set Π ⊂ Br, we need to prove that
U(Π) is relatively compact in Cςn

T (Ib
a). For each ζ ∈ Π ⊂ Br, based on the estimates (3.4), we can find

‖U ζ‖Cςn
T
≤

(T(b) − T(a))ςn

Γ (ςn + 1)
(M1‖ζ‖

p
Cςn

T
+ N1),

which implies U(Π) is uniformly bounded. Further, for ζ ∈ Cςn
T (Ib

a) and Z ∈ Ib
a , from the definition of

U and (A2), the operator derivative can be estimated as follows:∣∣∣(U ζ)(1)
T (Z )

∣∣∣ ≤ ∫ Z

a
G
ςn−1
T (Z , ς)|ζ(ς, g)|dς

≤
(T(b) − T(a))ςn−1

Γ(ςn)
(M1‖ζ‖

p
Cςn

T
+ N1) := `,
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where we used the fact

Dk
TIςn,T

a+ = Iςn−k,T
a+ , Π

(k)
T (Z ) =

(
1

T′(Z )
d
dt

)k

Π(Z ) for k = 0, 1, ..., n − 1.

Thus, for Z1,Z2 ∈ Ib
a with a < Z1 < Z2 < b and for ζ ∈ Cςn

T (Ib
a), we get

|(U ζ) (Z2) − (U ζ) (Z1)| =
∫ Z2

Z1

|(U ζ)′(ς)| ds ≤ `(Z2 −Z1).

We have (Z2 −Z1)→ 0 independent of U . So, U is equi-continuous.
Let

M(Z ) :=
{
ζn(Z ) : ζn(Z ) =

∫ Z

0
Q
ςn
T (Z , ς)K(ς, u, ζ(ς, u))dς

}
⊂ Br be a bounded set.

Then, by Proposition 2.11, we show that Z → h(M(Z )) is continuous on Ib
a . Also,

Q
ςn
T (Z , ς) ‖K(ς, u,U (ς, u))‖ ≤ Qςn

T (Z , ς) (M1rq2 + N1) ∈ L1
(
Ib

a ,R+

)
for all ς ∈ [a,Z ],Z ∈ Ib

a . Utilizing (A4) and Proposition 2.12, we get

h(M(Z )) ≤ h
({∫ Z

0
Q
ςn
T (Z , ς)K(ς, u,M(ς, u))dς

})
≤

∫ Z

0
Q
ςn
T (Z , ς)h (K(ς, u,M(ς, u))) dς

≤ 2νr

∫ Z

0
Q
ςn
T (Z , ς)h(M(ς))dς.

Thus,

h(M) ≤
[
2νr

∫ Z

0
Q
ςn
T (Z , ς)

]
h(M) ≤

2νr(T(b) − T(a))ςn

Γ (ςn + 1)
h(M) < h(M),

due to
2νr(T(b) − T(a))ςn

Γ (ςn + 1)
< 1.

Then, we have h(M) = 0, which implies, U (M) is a relatively compact subset of Cςn
T (Ib

a). Then,
there is a subsequence ζn which converges uniformly on Ib

a to some ζ∗ ∈ C
ςn
T (Ib

a) with the Arzela-
Ascoli theorem, and we derive that U is compact. By Proposition 2.16, U is h-Lipschitz with zero
constant. �

Theorem 3.6. Let (A1) and (A2) be satisfied, then the IVP (1.1)-(1.2) possesses a solution ζ ∈ Cςn
T (Ib

a)
based on ΛK < 1 and the set containing solutions of the proposed problem is bounded in Cςn

T (Ib
a).

Proof. The operators V ,U ,W that are presented at the start of this subsection will be used. They are
both continuous and bounded. Furthermore, V is h-Lipschitz with ΛK , as suggested by Lemma 3.3,
and U is h-Lipschitz with constant 0, according to Lemma 3.5. This further suggests that ΛK andW
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are h-Lipschitz. Because ΛK is a strict h-contraction,W follows likewise. Since it is h-condensing, it
isW since ΛK < 1. Now, examine the following collection of

Ξ =
{
ζ ∈ Cςn

T (Ib
a) : there exist % ∈ [0, 1] with x = %Wζ

}
.

We will show that the set Ξ is bounded. For ζ ∈ Ξ, we have ζ = %Wζ = %(U (ζ) + V (ζ)), which
implies that

‖ζ‖ ≤ %(‖V ζ‖ + ‖U ζ‖) (3.5)

≤ %
( (T(b) − T(a))ςn

Γ (ςn + 1)
(M1‖ζ‖

p
Cςn

T
+ N1) +

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) (‖ζ‖q
Cςn

T
)
)
. (3.6)

By Eq (3.5), we have that Ξ is bounded in Cςn
T (Ib

a). If it is not, then, dividing it by δ := ‖ζ‖Cςn
T

and
considering δ→ ∞, we get

1 ≤ lim
δ→∞

%
( (T(b)−T(a))ςn

Γ(ςn+1) (M1δ
p + N1) +

∑n−1
j=1 |a j|

(T(b)−T(a))ςn−ς j

Γ(ςn−ς j+1) (δq)
)

δ
= 0,

which is a contradiction. Therefore, Ξ is bounded and W possesses an FP. Ultimately, we have a
solution of IVP (1.1). �

Remark 3.7. (I) For p = 1, (A2) implies that Theorem 3.6 is true if the following is found

(T(b) − T(a))ςn

Γ (ςn + 1)
M1 < 1.

(II) For q = 1, (A3) implies that Theorem 3.6 is valid provided that

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) M2 < 1.

(III) If the hypotheses (A2) and (A3) are developed for p = 1 and q = 1, then Theorem 3.6 stays valid
supplemented to

(T(b) − T(a))ςn

Γ (ςn + 1)
M1 +

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) M2 < 1.

Here, results for the existence and uniqueness of solution (EUS) are established.

Theorem 3.8. Under the assumption (A1), the IVP (1.1)-(1.2) possesses one, and only one, solution if (T(b) − T(a))ςn

Γ (ςn + 1)
L +

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

)  < 1. (3.7)
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Proof. Consider that ζ, ζ ∈ Cςn
T (Ib

a) and Z ∈ Ib
a , then we can obtain∣∣∣∣(T(Z ) − T(a))1−ςn

(
Wζ(Z ) −Wζ(Z )

)∣∣∣∣
≤ (T(Z ) − T(a))1−ςn

∫ Z

0
Q
ςn
T (Z , ς)|K (ς, u, ζ(ς, u)) − K

(
ς, u, ζ(ς, u)

)
|dς

+ (T(Z ) − T(a))1−ςn

n−1∑
j=1

a j

∫ Z

0
Q
ςn−ς j

T (Z , ς)|ζ(ς, u) − ζ(ς, u)|dς

≤ (T(Z ) − T(a))1−ςn L‖ζ − ζ‖
∫ Z

0
Q
ςn
T (Z , ς)dς

+ (T(Z ) − T(a))1−ςn‖ζ − ζ‖

n−1∑
j=1

a j

∫ Z

0
Q
ςn−ς j

T (Z , ς)dς

≤
(T(b) − T(a))ςn

Γ (ςn + 1)
L‖ζ − ζ‖Cςn

T

+

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) ‖ζ − ζ‖Cςn
T

≤

 (T(b) − T(a))ςn

Γ (ςn + 1)
L +

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

)  ‖ζ − ζ‖Cςn
T
.

In view of the given condition
[

(T(b)−T(a))ςn

Γ(ςn+1) L +
∑n−1

j=1 |a j|
(T(b)−T(a))ςn−ς j

Γ(ςn−ς j+1)

]
< 1, W is a contraction.

Ultimately, Banach FPT ensures the uniqueness of FP of theW. �

For EUS of solutions for (1.1) and (1.3), we need the next lemma taken from Harikrishnan et al. [7].

Definition 3.9. A function ζ ∈ Cςn
T (Ib

a) is a solution of (1.1)–(1.3), if it satisfies L(D)ζ(Z , u) =

K
(
Z , u, ζ(Z , u)

)
for a.e. Z ∈ Ib

a , with

℘ (T(Z ) − T(a))1−ςn ζ(Z , u)
∣∣∣∣
Z =a

= ν (T(Z ) − T(a))1−ςn ζ(Z , u)
∣∣∣∣
Z =b

+ λ.

Lemma 3.10. For any h ∈ Cςn
T (Ib

a), the solution function ζ of the FDE (1.1) with (1.3) is given by

ζ(Z , u) =

∫ Z

0
Q
ςn
T (Z , ς)K (ς, u, ζ(ς, u)) dς +

n−1∑
j=1

a j

∫ Z

0
Q
ςn−ς j

T (Z , ς)ζ(ς, u)dς

+
(T(Z ) − T(ς))ςn−1

(℘ − ν)
(
λ + ν

( ∫ b

0
Q
ςn
T (b, ς)K (ς, u, ζ(ς, u)) dς (3.8)

+

n−1∑
j=1

a j

∫ b

0
Q
ςn−ς j

T (b, ς)K (ς, u, ζ(ς, u)) dς
))
.

By Lemma 3.10, we consider E,F ,G : Cςn
T (Ib

a) −→ Cςn
T (Ib

a) as follows:
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Eζ(Z , g) =

∫ Z

0
Q
ςn
T (Z , ς)K (Z , u, ζ(Z , u)) dς + ν℘T(Z )

∫ b

0
Q
ςn
T (b, ς)K (ς, u, ζ(ς, u)) dς, Z ∈ Ib

a ,

F ζ(Z , g) =

n−1∑
j=1

a j

∫ Z

0
Q
ςn−ς j

T (Z , ς)ζ(ς, u)dς + ν℘T(Z )
n−1∑
j=1

a j

∫ b

0
Q
ςn−ς j

T (b, ς)ζ(ς, u)dς, Z ∈ Ib
a .

and

Gζ(Z , g) = λ℘T(Z ), Z ∈ Ib
a ,

with

℘T(Z , g) =
(T(Z ) − T(ς))ςn−1

(℘ − ν)
, ℘ − ν , 0

and
℘T
∗ (b) = max

Z ∈Ib
a

|℘T(Z )|.

It is clear thatH is well-defined. Thus, (3.8) in Lemma 3.10 can be written as

Hζ(Z , g) = Eζ(Z , g) + F ζ(Z , g) + Gζ(Z , g), Z ∈ Ib
a .

SinceK is continuous,H is well-define and the FPs are the solutions of (3.8) in Lemma 3.10. From
V ,U and repeating the same lines and processes of Lemmas 3.3–3.5 to deal with E,K ,G, one can
prove the results.

Now, we move forward to the main results of the problem (1.1)–(1.3).

Lemma 3.11. The operator G : Cςn
T (Ib

a) → Cςn
T (Ib

a) is Lipschitz with 0 constant. Also, G is h-Lipschitz
with zero constant. Furthermore, F1 satisfies that:

‖Gζ‖Cςn
T
≤ |λ|℘T

∗ (b),

for every ζ ∈ Cςn
T (Ib

a).

Lemma 3.12. The operators E,F : Cςn
T (Ib

a) → Cςn
T (Ib

a) are continuous. Consequently E + F are
continuous. Moreover, E + F satisfies:

‖Eζ‖Cςn
T

+ ‖F ζ‖Cςn
T
≤

(
1 + |ν|℘T

∗ (b)
) (T(b) − T(a))ςn

Γ (ςn + 1)
(M1‖ζ‖

p
Cςn

T
+ N1)

+
(
1 + |ν|℘T

∗ (b)
) n−1∑

j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) (M2‖ζ‖
q
Cςn

T
+ N2), (3.9)

for every ζ ∈ Cςn
T (Ib

a).

Lemma 3.13. The operators E,F : Cςn
T (Ib

a)→ Cςn
T (Ib

a) are compact. Conclusively, E+F are h-Lipschitz
with 0 constant. Further, E + F is h-Lipschitz with 0 constant.
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Theorem 3.14. Let the conditions (A1) and (A2) hold true. Then, (1.1)–(1.3) have a solution ζ ∈

Cςn
T (Ib

a) and the set containing all the solutions of the BVP (1.1)–(1.3) is bounded in Cςn
T (Ib

a).

Proof. Consider that the operators defined above are E,K ,G,H , and are bounded and continuous. G
is h-Lipschitz with 0 according to Lemma 3.11, and E + K is h-Lipschitz with constant 0 according
to Lemma 3.13. Consequently,H is h-Lipschitz with constant 0, according to Proposition 2.15. Thus,
the operatorH with constant 0 is a strict h-contraction. Thus, h-condensing isH .

By considering the set:

Ξ =
{
ζ ∈ Cςn

T (Ib
a) : there exist % ∈ [0, 1] such that x = %Hζ

}
.

We prove that Ξ is bounded. For ζ ∈ Ξ, we obtain ζ = %Hu = %(V (ζ) + ς(ζ)), which shows that

‖ζ‖ ≤ %(‖Eu‖ + ‖F u‖ + ‖Gζ‖)

≤
(
1 + |ν|℘T

∗ (b)
) (T(b) − T(a))ςn

Γ (ςn + 1)
(M1‖ζ‖

p
Cςn

T
+ N1) + |λ|℘T

∗ (b)

+
(
1 + |ν|℘T

∗ (b)
) n−1∑

j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) (M2‖ζ‖
q
Cςn

T
+ N2).

Ultimately, Ξ is bounded in Cςn
T (Ib

a). If it is not, then

1 ≤ lim
δ→∞

|λ|℘T
∗ (b)
δ

+ lim
δ→∞

(
1 + |ν|℘T

∗ (b)
) [

(T(b)−T(a))ςn

Γ(ςn+1) (M1δ
p + N1) +

∑n−1
j=1 |a j|

(T(b)−T(a))ςn−ς j

Γ(ςn−ς j+1) (M2δ
q + N2)

]
δ

= 0,

which is a contradiction. Therefore, Ξ is bounded andH possesses an FP, which is the solution of the
FDE (1.1)–(1.3). �

Remark 3.15. (I) If we consider (A2) for p = 1, then Theorem 3.14 is valid if(
1 + |ν|℘T

∗ (b)
) (T(b) − T(a))ςn

Γ (ςn + 1)
M1 < 1.

(II) For (A3) at q = 1, the Theorem 3.14 is valid if

(
1 + |ν|℘T

∗ (b)
) n−1∑

j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) M2 < 1.

(III) If (A2) and (A3) are formulated for p = 1 and q = 1, then Theorem 3.14 is satisfied if we have

(
1 + |ν|℘T

∗ (b)
)  (T(b) − T(a))ςn

Γ (ςn + 1)
M1 +

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) M2

 < 1.

Next, the uniqueness of the solution is stated and proved.
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Theorem 3.16. With the use of condition (A1), (1.1)–(1.3) possess a unique solution if

(
1 + |ν|℘T

∗ (b)
)  (T(b) − T(a))ςn

Γ (ςn + 1)
L +

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

)  < 1. (3.10)

Proof. Let ζ, ζ ∈ Cςn
T (Ib

a) and Z ∈ Ib
a , then we obtain∣∣∣∣(T(Z ) − T(a))1−ςn

(
Hζ(Z ) −Hζ(Z )

)∣∣∣∣
≤ (T(Z ) − T(a))1−ςn

∫ Z

0
Q
ςn
T (Z , ς)|ζ(ς, u) − ζ(ς, u)|dς

+ (T(Z ) − T(a))1−ςn

n−1∑
j=1

a j

∫ Z

0
Q
ςn−ς j

T (Z , ς)|K (ς, u, ζ(ς, u)) − K (ς, u, ϕ̄(ς, u)) |dς

+ (T(Z ) − T(a))1−ςnν℘T(Z )
∫ Z

0
Q
ςn
T (Z , ς)|K (ς, u, ζ(ς, u)) − K (ς, u, ϕ̄(ς, u)) |dς

+ (T(Z ) − T(a))1−ςnν℘T(Z )
n−1∑
j=1

a j

∫ Z

0
Q
ςn−ς j

T (Z , ς)|ζ(ς, u) − ζ̄(ς, u)|dς

≤ (T(Z ) − T(a))1−ςn
(
1 + |ν|℘T

∗ (b)
)

L‖ζ − ζ‖
∫ Z

0
Q
ςn
T (Z , ς)dς

+ (T(Z ) − T(a))1−ςn
(
1 + |ν|℘T

∗ (b)
)
‖ζ − ζ‖

n−1∑
j=1

a j

∫ Z

0
Q
ςn−ς j

T (Z , ς)dς

≤
(T(b) − T(a))ςn

Γ (ςn + 1)

(
1 + |ν|℘T

∗ (b)
)

L‖ζ − ζ‖Cςn
T

+

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

) (
1 + |ν|℘T

∗ (b)
)
‖ζ − ζ‖Cςn

T

≤
(
1 + |ν|℘T

∗ (b)
)  (T(b) − T(a))ςn

Γ (ςn + 1)
L +

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
ςn − ς j + 1

)  ‖ζ − ζ‖Cςn
T
.

By
(
1 + |ν|℘T

∗ (b)
) [

(T(b)−T(a))ςn

Γ(ςn+1) L +
∑n−1

j=1 |a j|
(T(b)−T(a))ςn−ς j

Γ(ςn−ς j+1)

]
< 1, we get that H is a contraction, and by

Banach FPT,H possesses one, and only one, FP, which is a unique solution of FDE (1.1)–(1.3). �

4. A mathematical problem for illustration of the results

Two examples are provided for the illustration of the results of the work.

Example 4.1. In the operator L of (1.1), (1.2), presuming that a1 = a2 = . . . = an = 0, and

K
(
Z , u, ζ(Z , u)

)
=

1 − ζ(Z ) cos |ζ(Z )| − e−Z

100
,
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we get the following example:

Dς=0.5+0.3iζ(Z ) =
Z 2 − ζ(Z ) cos |ζ(Z )| − e−Z

3

100
, (4.1)

with initial condition:
(T(Z ) − T(a))1−ςn ζ(Z , u)

∣∣∣∣
Z =0

= 0. (4.2)

For the verification of the Theorem 3.6, we start with

|K
(
Z , u, ζ(Z , u)

)
− K

(
Z , u, u(Z , u)

)
|

=
∣∣∣∣Z 2 − sin |ζ(Z )| − e−Z

3

100
−

Z 2 − sin |u(Z )| − e−Z
3

100

∣∣∣∣
≤

1
100
|ζ − u|. (4.3)

From the K
(
Z , u, ζ(Z , u)

)
, we have L = M1 = M2 = 1

100 , N1 = N2 = 1
50 , vr,℘ = 1

100 , T(t) = t. This
implies that (A1) is satisfied. Furthermore, we have

‖K
(
Z , u, ζ(Z , u)

)
‖ = max

Z ∈[0, 1]

|1 − ζ(t) cos |ζ(Z )| − e−Z
3
|

100

≤
1 + ‖ζ‖ + e−Z

3
|

100
(4.4)

=
1

100
‖ζ‖ +

1
50
,

with M1 = 1
100 and N1 = 1

50 . Thus, (A2) is satisfied. Also, Λk < 1. Hence, all the requirements of the
Theorem 3.6 are fulfilled and, therefore, the presumed FDE has a solution and it is bounded in Cςn

T (Ib
a).

In the Figure 1, we have the numerical solution for the complex order FDE (4.1) for different orders.
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 =|0.7+0.5i|

Figure 1. Numerical solution for the complex order FDE (4.1), for different orders.
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Example 4.2. In the operator L of (1.1), (1.3), presuming that a1 = a2 = . . . = an = 0, and

K
(
Z , u, ζ(Z , u)

)
=

1 − sin |ζ(Z )| − e−Z

100
,

we get the following example:

Dς=0.5+0.3iζ(t) =
1 − sin |ζ(Z )| − e−Z

100
, (4.5)

with boundary condition:

℘ (T(Z ) − T(a))1−ςn ζ(Z , u)
∣∣∣∣
Z =a

= 0.5. (4.6)

Consider that

|K
(
Z , u, ζ(Z , u)

)
− K

(
Z , u, u(Z , u)

)
|

=
1 − sin |ζ(Z )| − e−Z

100
−

1 − sin |u(Z )| − e−Z

100

≤
1

100
|ζ − u|. (4.7)

Our presumed K
(
Z , u, ζ(Z , u)

)
implies that L = M1 = M2 = 1

100 , N1 = N2 = 1
50 , vr,℘ = 1

100 , T(t) = t.
This implies that (A1) is satisfied. For the verification of the Theorem 3.16, we have, from (3.10),

(
1 + |ν|℘T

∗ (b)
)  (T(b) − T(a))ςn

Γ (|ςn + 1|)
L +

n−1∑
j=1

|a j|
(T(b) − T(a))ςn−ς j

Γ
(
|ςn − ς j + 1

∣∣∣)
 = 1.01

2 +
√
π

100
√
π
< 1. (4.8)

In the Figure 2, we have the numerical solution for the complex order FDE (4.5) for different orders.
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Figure 2. Numerical solution for the complex order FDE (4.5), for different orders.
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5. Control design

This study employs a control scheme to analyze the dynamics of leukemia using a mathematical
model. The aim is to understand better how chemotherapy affects the growth of both healthy and
malignant cells. The dynamics are represented as follows [47]:

Ẋ = f (X) + Gv(t) (5.1)

where

G =


0
0
1

 , f (X) =


anX1 ln

(
Na
X1

)
− bnX1 − cX1X2 −

X1X3
1+d2X3+d1X

2
3

alX2 ln
(

La
X2

)
− blX2 −

X2X3
1+d4X3+d3X

2
3

−bhX3

 .
The tracking error expression is provided as e = X − Xd, ė = Ẋ − Ẋd,

ė = f (X) + Gv(t) − Ẋd. (5.2)

Notation: The power of vectors is given as

|Y|
ρsign(Y) =

[
|Y1|

ρsign(Y1), |Y2|
ρsign(Y2) , . . . , |Yn|

ρsign(Yn)
]T

where Y is variable and ρ is constant.
The proposed sliding mode control aims to ensure strong system control along a fixed-time

manifold. This involves combining nonlinear sliding surfaces with fixed-time convergence at high
speeds. This study introduces a fixed-time TSMC and defines a sliding surface as follows:

S = L1e + L2

∫
|e|m1 sign(e)dt + L3

∫
|e|m2 sign(e)dt (5.3)

where L1, L2, and L3 positive are diagonal matrices, m2 > 1, and 0 < m1 < 1.
The Ṡ can be computed as

Ṡ = L1ė + L2|e|m1 sign(e) + L3|e|m2 sign(e). (5.4)

By substituting (5.2) into (5.4), one can get

Ṡ = L1( f (X) + Gv(t) − Ẋd) + L2|e|m1 sign(e) + L3|e|m2 sign(e). (5.5)

For controlling nonlinear systems and achieving fast response, chatter-free control, and good
tracking performance, the robust fixed-time TSMC method is designed as

v(t) = −G+


f (X) − Ẋd

+L−1
1 L2|e|m1 sign(e) + L−1

1 L3|e|m2 sign(e)
+L−1

1 J1|S |n1 sign(S ) + L−1
1 J2|S |n2 sign(S )

 (5.6)

where J1 > 0 and J2 > 0 are constant, 0 < n1 < 1, and n2 > 1.
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Theorem 5.1. The expression (5.3) indicates that the states converge in a fixed time.

Proof. The Lyapunov function is chosen as

Ve =
1
2

eT e. (5.7)

Ṡ can be given as
V̇e = eT ė. (5.8)

When S = Ṡ = 0, one can have the expression from (5.3) as

ė = −L̃2|e|m1 sign(e) − L̃3|e|m2 sign(e) (5.9)

where L̃2 = L2/L1, L̃3 = L3/L1.
By putting (5.9) into (5.8), one can have

V̇e = eT
(
−L̃2|e|m1 sign(e) − L̃3|e|m2 sign(e)

)
. (5.10)

By simplifying (5.10), one can obtain

V̇e ≤ −L̃2i(eT e)
m1+1

2 − L̃3in
1−m2

2 (eT e)
m2+1

2 , (5.11)

V̇e ≤ −L̃2i2
m1+1

2 Ve
m1+1

2 − L̃3in
1−m2

2 2
m2+1

2 Ve
m2+1

2 . (5.12)

According to Eq (2.7), the fixed convergence time can be calculated as

T1 =
1

L̃2i2
m1+1

2 (1 − m1+1
2 )

+
1

L̃3in
1−m2

2 2
m2+1

2 (m2+1
2 − 1)

. (5.13)

Hence, the state trajectories e will converge to zero in a fixed time. �

Theorem 5.2. Considering the error dynamics (5.2) and the nonlinear system (5.1), with the intended
control method (5.6), the trajectories will converge toward the sliding surface (5.3) in a fixed amount
of time.

Proof. The Lyapunov function is selected as follows

VS =
1
2

S T S . (5.14)

The V̇S is given as
V̇S = S T Ṡ . (5.15)

By substituting (5.5) in (5.15), one can get

V̇S = S T
(
L1( f (X) + Gv(t) −

.

Xd) + L2|e|m1 sign(e) + L3|e|m2 sign(e)
)
. (5.16)
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By substituting control input (5.6) in (5.16), one can have

V̇S = S T


L1( f (X) + G

−G+


f (X) −

.

Xd

+L−1
1 L2|e|m1 sign(e) + L−1

1 L3|e|m2 sign(e)
+L−1

1 J1|S |n1 sign(S ) + L−1
1 J2|S |n2 sign(S )




−Ẋd) + L2|e|m1 sign(e) + L3|e|m2 sign(e)


. (5.17)

With simplification of (5.17), one gets

V̇S = S T (−J1|S |n1 sign(S ) − J2|S |n2 sign(S )) . (5.18)

This can be simplified as
V̇S ≤ −J1(S T S )

n1+1
2 − J2n

1−n2
2 (S T S )

n2+1
2 , (5.19)

V̇S ≤ −J1(2VS )
n1+1

2 − J2n
1−n2

2 (2VS )
n2+1

2 ≤ −J12
n1+1

2 VS
n1+1

2 − J2n
1−n2

2 2
n2+1

2 VS
n2+1

2 . (5.20)

Using Eq (2.7), one can calculate the reaching time as

T2 =
1

J12
n1+1

2 (1 − n1+1
2 )

+
1

J2n
1−n2

2 2
n2+1

2 (n2+1
2 − 1)

. (5.21)

As a result, the sliding surface will reach in fixed time T2. This completes the proof. �

6. Numerical simulations of control method

This section includes a case study that aims to validate the findings of the theoretical study and offer
a graphical representation of the validation of the recommended methodology. The recommended
controller is simulated using the widely used Matlab/Simulink, and the system parameters are listed in
Table 1.

Table 1. Model parameters.

Parameter Value Parameter Value
an 0.01 c 10−10

al 0.01 d1 0.25
bn 0.04 d2 0.14
bl 0.04 d3 0.01
bh 0.4 d4 0.01
La 1010 Na 1010

The following are the parameters of the suggested control method [48]:

L1 =


10−30 0 0

0 10−30 0
0 0 100

 , L2 =


10−30 0 0

0 10−30 0
0 0 0.22

 , L3 =


10−30 0 0

0 10−30 0
0 0 220

 ,
AIMS Mathematics Volume 9, Issue 8, 20692–20720.
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J1 = 10−3, J2 = 10−10, m1 = 0.01,m2 = 1.01, n1 = 0.01, n2 = 1.01.

The reference inputs are given as:

X1d = 8 × 107, X2d = 0, X3d = 2.

Clearly, the normal cells follow the recommended method and meet the desired inputs, as shown
in Figure 3, indicating that the proposed scheme achieves the desired outcome. Figure 4 illustrates
the patterns of leukemic cells using the proposed method. The suggested controller effectively tracks
the leukemic cells along the intended path. The total amount of medication used by the recommended
approach is depicted in Figure 5, showing the calculated and total quantities. The simulation results
demonstrate that the suggested method achieves the desired outcome without impacting the therapeutic
process. Additionally, Figure 6 displays the control inputs for the recommended approach.
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Figure 3. Normal cells.
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Figure 4. Leukemic cells.
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Figure 5. Total quantity of chemotherapeutic agent.
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Figure 6. Control input.

The proposed controller effectively tracked the desired reference, resulting in lower steady-state
error and faster convergence. The therapy did not harm healthy cells. The suggested method is
beneficial as it requires fewer therapeutic medicines and leads to faster elimination of leukemic cells.

7. Conclusions

In the present study, we proved the existence and uniqueness of solutions for a class of multi-
complex order nonlinear FDEs. Our approach relies on a new operator suitable for non-singular FDEs
with T-RL fractional derivatives, and the use of topological degree theory. The primary findings are
demonstrated within a multi-complex order fractional operator of one function with another function.
It is explicitly stated and demonstrated that solutions exist and are unique. We provided two complex-
order FDEs with initial and boundary values and tested them for the presence of solutions in order to
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validate the results. The numerical solutions for various complex orders are explained. The primary
question posed is addressed by the arguments made in this paper.

The proposed control method is also utilized to regulate the dosage of chemotherapy administered to
patients with acute leukemia, aiming to eradicate as few cancerous cells as possible while safeguarding
healthy ones. As a result, the fixed-time TSMC control strategy for acute leukemia was developed. This
approach yields strong simulation results and demonstrates exceptional tracking and error convergence
to the desired references. In future research, additional related control factors should be investigated to
assess their effectiveness, as this method alone may not be sufficient for disease management.

The same approach can be further considered for the systems of hybrid structure involving different
initial and boundary value conditions. Moreover, multi-complex order nonlinear FDEs could be of
other interest.
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13. A. J. Muñoz-Vázquez, J. D. Sánchez-Torres, M. Defoort, Second-order predefined-time
sliding-mode control of fractional-order systems, Asian J. Control, 24 (2022), 74–82.
https://doi.org/10.1002/asjc.2447

14. A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems,
IEEE Trans. Automat. Contr., 57 (2011), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869

15. Y. Feng, X. Yu, F. Han, On nonsingular terminal sliding-mode control of nonlinear systems,
Automatica, 49 (2013), 1715–1722. https://doi.org/10.1016/j.automatica.2013.01.051

16. H. Li, L. Dou, Z. Su, Adaptive nonsingular fast terminal sliding mode
control for electromechanical actuator, Int. J. Syst. Sci., 44 (2011), 401–415.
https://doi.org/10.1080/00207721.2011.601348

17. S. Ahmed, A. T. Azar, Adaptive fractional tracking control of robotic manipulator using fixed-time
method, Complex Intell. Syst., 10 (2023), 369–382. https://doi.org/10.1007/s40747-023-01164-7

AIMS Mathematics Volume 9, Issue 8, 20692–20720.

http://dx.doi.org/https://doi.org/10.1016/j.jde.2013.05.028
http://dx.doi.org/https://doi.org/10.1142/S0218348X23400078
http://dx.doi.org/https://doi.org/10.1016/j.csfx.2024.100107
http://dx.doi.org/https://doi.org/10.3934/math.2023514
http://dx.doi.org/https://doi.org/10.1142/S0218348X23400558
http://dx.doi.org/https://doi.org/10.3934/math.2023334
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03525-3
http://dx.doi.org/https://doi.org/10.1002/asjc.2447
http://dx.doi.org/https://doi.org/10.1109/TAC.2011.2179869
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2013.01.051
http://dx.doi.org/https://doi.org/10.1080/00207721.2011.601348
http://dx.doi.org/https://doi.org/10.1007/s40747-023-01164-7


20718

18. J. D. Sánchez-Torres, M. Defoort, A. J. Munoz-Vázquez, A second order sliding
mode controller with predefined-time convergence, 2018 15th International Conference
on Electrical Engineering, Computing Science and Automatic Control (CCE), 2018.
https://doi.org/10.1109/ICEEE.2018.8533952

19. M. Zubair, I. A. Rana, Y. Islam, S. A. Khan, Variable structure based control
for the chemotherapy of brain tumor, IEEE Access, 9 (2021), 107333–107346.
https://doi.org/10.1109/ACCESS.2021.3091632

20. S. Ahmad, NasimUllah, N. Ahmed, M. Ilyas, W. Khan, Super twisting sliding mode control
algorithm for developing artificial pancreas in type 1 diabetes patients, Biomed. Signal Proces.
Control, 38 (2017), 200–211. https://doi.org/10.1016/j.bspc.2017.06.009

21. S. Ahmed, A. T. Azar, I. K. Ibraheem, Model-free scheme using time delay estimation with
fixed-time FSMC for the nonlinear robot dynamics, AIMS Math., 9 (2024), 9989–10009.
https://doi.org/10.3934/math.2024489

22. S. Ahmed, A. T. Azar, I. K. Ibraheem, Nonlinear system controlled using novel adaptive fixed-time
SMC, AIMS Math., 9 (2024), 7895–7916. https://doi.org/10.3934/math.2024384

23. V. Parra-Vega, Second order sliding mode control for robot arms with time
base generators for finite-time tracking, Dynam. Control, 11 (2001), 175–186.
https://doi.org/10.1023/A:1012535929651

24. V. Parra-Vbga, G. Hirzinger, TBG sliding surfaces for perfect tracking of robot manipulators, In:
X. Yu, J. X. Xu, Advances in variable structure systems: analysis, integration and applications,
(2000), 115–124.

25. T. Tsuji, P. G. Morasso, M. Kaneko, Feedback control of nonholonomic mobile robots using time
base generator, Proceedings of IEEE International Conference on Robotics and Automation, 2
(1995), 1385–1390. https://doi.org/10.1109/ROBOT.1995.525471
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