In this work, a novel Hilfer cotangent fractional derivative is presented. This derivative combines the characteristics of the Riemann-Liouville cotangent fractional derivative and the Caputo cotangent fractional derivative. The essential properties of the newly introduced derivative are discussed. By utilizing this derivative, a nonlinear fractional differential problem with a nonlocal initial condition is investigated, and its equivalence to a cotangent Volterra integral equation is demonstrated. The uniqueness and existence of solutions are established by employing fixed-point theorems. Additionally, two illustrative examples are provided to illustrate the obtained results.
Citation: Lakhlifa Sadek, Tania A Lazǎr. On Hilfer cotangent fractional derivative and a particular class of fractional problems[J]. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
In this work, a novel Hilfer cotangent fractional derivative is presented. This derivative combines the characteristics of the Riemann-Liouville cotangent fractional derivative and the Caputo cotangent fractional derivative. The essential properties of the newly introduced derivative are discussed. By utilizing this derivative, a nonlinear fractional differential problem with a nonlocal initial condition is investigated, and its equivalence to a cotangent Volterra integral equation is demonstrated. The uniqueness and existence of solutions are established by employing fixed-point theorems. Additionally, two illustrative examples are provided to illustrate the obtained results.
[1] | A. Atangana, E. F. D. Goufo, Cauchy problems with fractal-fractional operators and applications to groundwater dynamics, Fractals, 28 (2020), 2040043. https://doi.org/10.1142/S0218348X20400435 doi: 10.1142/S0218348X20400435 |
[2] | L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 753601. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486 |
[3] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[4] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Vol. 204, Amsterdam: North-Holland, 2006. |
[5] | R. L. Magin, Fractional calculus in bioengineering, Vol. 149, Redding: Begell House Publishers, 2006. |
[6] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, Singapore: World Scientific, 2010. https://doi.org/10.1142/p614 |
[7] | K. M. Owolabi, A. Atangana, A. Akgul, Modelling and analysis of fractal-fractional partial differential equations: application to reaction-diffusion model, Alex. Eng. J., 59 (2020), 2477–2490. https://doi.org/10.1016/j.aej.2020.03.022 doi: 10.1016/j.aej.2020.03.022 |
[8] | M. B. Riaz, A. Atangana, T. Abdeljawad, Local and nonlocal differential operators: a comparative study of heat and mass transfer in MHD Oldroyd-B fluid with ramped wall temperature, Fractals, 28 (2020), 2040033. https://doi.org/10.1142/S0218348X20400332 doi: 10.1142/S0218348X20400332 |
[9] | A. Atangana, Derivative with a new parameter: theory, methods and applications, San Diego: Academic Press, 2016. https://doi.org/10.1016/C2014-0-04844-7 |
[10] | A. Atangana, A. Secer, A note on fractional order derivatives and table of fractional derivatives of some special functions, Abstr. Appl. Anal., 2013 (2013), 279681. https://doi.org/10.1155/2013/279681 doi: 10.1155/2013/279681 |
[11] | F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142 |
[12] | F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. https://doi.org/10.22436/jnsa.010.05.27 doi: 10.22436/jnsa.010.05.27 |
[13] | F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z |
[14] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15. |
[15] | T. J. Osler, The fractional derivative of a composite function, SIAM J. Math. Anal., 1 (1970), 288–293. https://doi.org/10.1137/0501026 doi: 10.1137/0501026 |
[16] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006 |
[17] | A. K. Anatoly, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. |
[18] | F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn. Syst., Ser. S, 13 (2020), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039 |
[19] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[20] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016 |
[21] | A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889–898. https://doi.org/10.1515/math-2015-0081 doi: 10.1515/math-2015-0081 |
[22] | D. R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Commun. Appl. Nonlinear Anal., 24 (2017), 17–48. |
[23] | D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109–137. |
[24] | L. Sadek, A cotangent fractional derivative with the application, Fractal Fract., 7 (2023), 444. https://doi.org/10.3390/fractalfract7060444 doi: 10.3390/fractalfract7060444 |
[25] | M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the $p$-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 68. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9 |
[26] | S. T. M. Thabet, S. Etemad, S. Rezapour, On a new structure of the pantograph inclusion problem in the Caputo conformable setting, Bound. Value Probl., 2020 (2020), 171. https://doi.org/10.1186/s13661-020-01468-4 doi: 10.1186/s13661-020-01468-4 |
[27] | A. Atangana, D. Baleanu, Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo-Liouville derivative, Filomat, 31 (2017), 2243–2248. https://doi.org/10.2298/FIL1708243A doi: 10.2298/FIL1708243A |
[28] | Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 10. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10 |
[29] | S. Harikrishnan, K. Shah, D. Baleanu, K. Kanagarajan, Note on the solution of random differential equations via $\psi $-Hilfer fractional derivative, Adv. Differ. Equ., 2018 (2018), 224 https://doi.org/10.1186/s13662-018-1678-8 doi: 10.1186/s13662-018-1678-8 |
[30] | F. Jarad, S. Harikrishnan, K. Shah, K. Kanagarajan, Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative, Discrete Contin. Dyn. Syst., Ser., S13 (2020), 723. https://doi.org/10.3934/dcdss.2020040 doi: 10.3934/dcdss.2020040 |
[31] | W. Shammakh, H. Z. Alzumi, Existence results for nonlinear fractional boundary value problem involving generalized proportional derivative, Adv. Differ. Equ., 2019 (2019), 94. https://doi.org/10.1186/s13662-019-2038-z doi: 10.1186/s13662-019-2038-z |
[32] | D. Vivek, K. Kanagarajan, E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 15. https://doi.org/10.1007/s00009-017-1061-0 doi: 10.1007/s00009-017-1061-0 |
[33] | N. D. Phuong, F. M. Sakar, S. Etemad, S. Rezapour, A novel fractional structure of a multi-order quantum multi-integro-differential problem, Adv. Differ. Equ., 2020 (2020), 633. https://doi.org/10.1186/s13662-020-03092-z doi: 10.1186/s13662-020-03092-z |
[34] | D. Baleanu, S. Etemad, H. Mohammadi, S. Rezapour, A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul., 100 (2021), 105844. https://doi.org/10.1016/j.cnsns.2021.105844 doi: 10.1016/j.cnsns.2021.105844 |
[35] | D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. https://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0 |
[36] | K. M. Furati, M. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009 |
[37] | D. Oliveira, E. C. de Oliveira, Hilfer-Katugampola fractional derivatives, Comput. Appl. Math., 37 (2018), 3672–3690. https://doi.org/10.1007/s40314-017-0536-8 doi: 10.1007/s40314-017-0536-8 |
[38] | K. Sadri, K. Hosseini, D. Baleanu, S. Salahshour, E. Hinçal, A robust scheme for Caputo variable-order time-fractional diffusion-type equations, J. Therm. Anal. Calorim., 148 (2023), 5747–5764. https://doi.org/10.1007/s10973-023-12141-0 doi: 10.1007/s10973-023-12141-0 |
[39] | Z. Ali, F. Rabiei, K. Hosseini, A fractal-fractional-order modified predator-prey mathematical model with immigrations, Math. Comput. Simul., 207 (2023), 466–481. https://doi.org/10.1016/j.matcom.2023.01.006 doi: 10.1016/j.matcom.2023.01.006 |
[40] | K. Sadri, K. Hosseini, E. Hinçal, D. Baleanu, S. Salahshour, A pseudo-operational collocation method for variable-order time-space fractional KdV-Burgers-Kuramoto equation, Math. Methods Appl. Sci., 46 (2023), 8759–8778. https://doi.org/10.1002/mma.9015 doi: 10.1002/mma.9015 |
[41] | L. Sadek, A. S. Bataineh, H. Talibi Alaoui, I. Hashim, The novel Mittag-Leffler-Galerkin method: application to a Riccati differential equation of fractional order, Fractal Fract., 7 (2023), 302. https://doi.org/10.3390/fractalfract7040302 doi: 10.3390/fractalfract7040302 |
[42] | L. Sadek, Stability of conformable linear infinite-dimensional systems, Int. J. Dynam. Control, 11 (2023), 1276–1284. https://doi.org/10.1007/s40435-022-01061-w doi: 10.1007/s40435-022-01061-w |
[43] | L. Sadek, B. Abouzaid, E. M. Sadek, H. Talibi Alaoui, Controllability, observability and fractional linear-quadratic problem for fractional linear systems with conformable fractional derivatives and some applications, Int. J. Dynam. Control, 11 (2023), 214–228. https://doi.org/10.1007/s40435-022-00977-7 doi: 10.1007/s40435-022-00977-7 |
[44] | M. Krasnoselskii, Two remarks about the method of successive approximations, Mat. Nauk, 10 (1955), 123–127. |
[45] | J. W. Green, F. A. Valentine, On the Arzelá-Ascoli theorem, Math. Maga., 34 (1961), 199–202. https://doi.org/10.1080/0025570X.1961.11975217 doi: 10.1080/0025570X.1961.11975217 |