Processing math: 75%
Research article Special Issues

Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative

  • Received: 22 July 2022 Revised: 04 September 2022 Accepted: 16 September 2022 Published: 30 September 2022
  • MSC : 46S40, 47H10, 54H25

  • This article adopts a class of nonlinear fractional differential equation associating Hilfer generalized proportional fractional (GPF) derivative with having boundary conditions, which amalgamates the Riemann-Liouville (RL) and Caputo-GPF derivative. Taking into consideration the weighted space continuous mappings, we first derive a corresponding integral for the specified boundary value problem. Also, we investigate the existence consequences for a certain problem with a new unified formulation considering the minimal suppositions on nonlinear mapping. Detailed developments hold in the analysis and are dependent on diverse tools involving Schauder's, Schaefer's and Kransnoselskii's fixed point theorems. Finally, we deliver two examples to check the efficiency of the proposed scheme.

    Citation: Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi. Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative[J]. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018

    Related Papers:

    [1] Fahad Alsharari, Ahmed O. M. Abubaker, Islam M. Taha . On r-fuzzy soft γ-open sets and fuzzy soft γ-continuous functions with some applications. AIMS Mathematics, 2025, 10(3): 5285-5306. doi: 10.3934/math.2025244
    [2] Dina Abuzaid, Samer Al-Ghour . Supra soft Omega-open sets and supra soft Omega-regularity. AIMS Mathematics, 2025, 10(3): 6636-6651. doi: 10.3934/math.2025303
    [3] Rui Gao, Jianrong Wu . Filter with its applications in fuzzy soft topological spaces. AIMS Mathematics, 2021, 6(3): 2359-2368. doi: 10.3934/math.2021143
    [4] Arife Atay . Disjoint union of fuzzy soft topological spaces. AIMS Mathematics, 2023, 8(5): 10547-10557. doi: 10.3934/math.2023535
    [5] Ibtesam Alshammari, Islam M. Taha . On fuzzy soft β-continuity and β-irresoluteness: some new results. AIMS Mathematics, 2024, 9(5): 11304-11319. doi: 10.3934/math.2024554
    [6] Orhan Göçür . Amply soft set and its topologies: AS and PAS topologies. AIMS Mathematics, 2021, 6(4): 3121-3141. doi: 10.3934/math.2021189
    [7] Rehab Alharbi, S. E. Abbas, E. El-Sanowsy, H. M. Khiamy, Ismail Ibedou . Soft closure spaces via soft ideals. AIMS Mathematics, 2024, 9(3): 6379-6410. doi: 10.3934/math.2024311
    [8] Tareq M. Al-shami, Zanyar A. Ameen, A. A. Azzam, Mohammed E. El-Shafei . Soft separation axioms via soft topological operators. AIMS Mathematics, 2022, 7(8): 15107-15119. doi: 10.3934/math.2022828
    [9] G. Şenel, J. I. Baek, S. H. Han, M. Cheong, K. Hur . Compactness and axioms of countability in soft hyperspaces. AIMS Mathematics, 2025, 10(1): 72-96. doi: 10.3934/math.2025005
    [10] Dina Abuzaid, Samer Al Ghour . Three new soft separation axioms in soft topological spaces. AIMS Mathematics, 2024, 9(2): 4632-4648. doi: 10.3934/math.2024223
  • This article adopts a class of nonlinear fractional differential equation associating Hilfer generalized proportional fractional (GPF) derivative with having boundary conditions, which amalgamates the Riemann-Liouville (RL) and Caputo-GPF derivative. Taking into consideration the weighted space continuous mappings, we first derive a corresponding integral for the specified boundary value problem. Also, we investigate the existence consequences for a certain problem with a new unified formulation considering the minimal suppositions on nonlinear mapping. Detailed developments hold in the analysis and are dependent on diverse tools involving Schauder's, Schaefer's and Kransnoselskii's fixed point theorems. Finally, we deliver two examples to check the efficiency of the proposed scheme.



    In this paper, we consider the following Rao-Nakra sandwich beam with time-varying weights and frictional dampings in (x,t)(0,L)×(0,),

    ρ1h1uttE1h1uxxk(u+v+αwx)+α1(t)f1(ut)=0,ρ3h3vttE3h3vxx+k(u+v+αwx)+α2(t)f2(vt)=0,ρhwtt+EIwxxxxαk(u+v+αwx)x+α3(t)f3(wt)=0, (1.1)

    in which u and v denote the longitudinal displacement and shear angle of the bottom and top layers, and w represents the transverse displacement of the beam. The positive constants ρi, hi, and Ei (i=1,3) are physical parameters representing, respectively, density, thickness, and Young's modulus of the i-th layer for i=1,2,3 and ρh=ρ1h1+ρ2h2+ρ3h3. EI=E1I1+E3I3, α=h2+(h1+h32), k=1h2(E22(1+μ)), where μ is the Poisson ratio 1<μ<12. The functions α1(t), α2(t), α3(t) are the time dependent of the nonlinear frictional dampings f1(ut), f2(vt), f3(wt), respectively. For the system (1.1), we consider the following Dirichlet-Neumann boundary conditions

    u(0,t)=u(L,t)=0,t(0,),v(0,t)=v(L,t)=0,t(0,),w(0,t)=wx(0,t)=0,t(0,),w(L,t)=wx(L,t)=0,t(0,), (1.2)

    and the initial conditions

    u(x,0)=u0,ut(x,0)=u1in (0,L),v(x,0)=v0,vt(x,0)=v1in (0,L),w(x,0)=w0,wt(x,0)=w1in (0,L). (1.3)

    The system (1.1)–(1.3) consists of one Euler-Bernoulli beam equation for the transversal displacement, and two wave equations for the longitudinal displacements of the top and bottom layers.

    Our aim is to investigate the asymptotic behavior of solutions for the system (1.1)–(1.3). We study the effect of the three nonlinear dampings on the asymptotic behavior of the energy function. Under nonrestrictive on the growth assumption on the frictional damping terms, we establish exponential and general energy decay rates for this system by using the multiplier approach. The results generalize some earlier decay results on the Rao-Nakra sandwich beam equation.

    First, let's review some previous findings about multilayered sandwich beam models. By applying the Riesz basis approach, Wang et al. [1] studied a sandwich beam system with a boundary control and established the exponential stability as well as the exact controllability and observability of the system. The author of [2] employed the multiplier approach to determine the precise controllability of a Rao-Nakra sandwich beam with boundary controls rather than the Riesz basis approach. Hansen and Imanuvilov [3,4] investigated a multilayer plate system with locally distributed control in the boundary and used Carleman estimations to determine the precise controllability results. Özer and Hansen [5,6] succeeded in obtaining, for a multilayer Rao-Nakra sandwich beam, boundary feedback stabilization and perfect controllability. One viscous damping effect on either the beam equation or one of the wave equations was all that was taken into account by Liu et al. [7] when they established the polynomial decay rate using the frequency domain technique. The semigroup created by the system is polynomially stable of order 1/2, according to Wang [8], who analyzed a Rao-Nakra beam with boundary damping only on one end for two displacements using the same methodology. One can find additional results on the multilayer beam in [9,10,11,12,13,14,15].

    In this paper, we consider a Rao-Nakra sandwich beam with time-varying weights and frictional dampings, i.e., system (1.1)–(1.3). The main results are twofold:

    (I) We establish an exponential decay of the system in the case of linear frictional dampings by using the multiplier approach, and the decay result depends on the time-varying weights αi.

    (II) We establish more general decay of the system in the case of nonlinear frictional dampings by using the multiplier approach, and the decay result depends on the time-varying weights αi and the frictional dampings fi. To the best of our knowledge, there is no stability results on the Rao-Nakra sandwich beam with nonlinear frictional dampings. The remainder of the paper is as follows. In Section 2, we introduce some notations and preliminary results. In Section 3, we state the theorem of the stability and give a detailed proof.

    In this section, we present some materials needed in the proof of our results. Throughout this paper, c and ε are used to denote generic positive constants. We consider the following assumptions:

    (H1) For (i=1,2,3), the functions fi:RR are C0 nondecreasing satisfying, for c1,c2>0,

    s2+f2i(s)|F1i(sfi(s))for all|s|ri,c1|s||fi(s)|c2|s|for all|s|ri, (2.1)

    where Fi:(0,)(0,) (i=1,2,3) are C1 functions, which are linear or strictly increasing and strictly convex C2 functions on (0,ri] with Fi(0)=Fi(0)=0.

    (H2) For (i=1,2,3), the time dependent functions αi:[0,)(0,) are C1 functions satisfying 0αi(t)dt=.

    Remark 2.1. (1) Hypothesis (H1) implies that sfi(s)>0, for all s0. This condition (H1) was introduced and employed by Lasiecka and Tataru [16]. It was shown there that the monotonicity and continuity of fi guarantee the existence of the function Fi with the properties stated in (H1).

    (2) For more results on the convexity properties on the nonlinear frictional dampings and sharp energy decay rates, we refer to the works by Boussouira and her co-authors [17,18,19].

    The following lemmas will be of essential use in establishing our main results.

    Lemma 3.1. [20] Let E:R+R+ be a nonincreasing function and γ:R+R+ be a strictly increasing C1-function, with γ(t)+ as t+. Assume that there exists c>0 such that

    Sγ(t)E(t)dtcE(S),1S<+,

    then there exist positive constants k and ω such that

    E(t)keωγ(t).

    Lemma 3.2. Let E:R+R+ be a differentiable and nonincreasing function and let χ:R+R+ be a convex and increasing function such that χ(0)=0. Assume that

    +sχ(E(t))dtE(s),s0, (3.1)

    then E satisfies the estimate

    E(t)ψ1(h(t)+ψ(E(0))),t0, (3.2)

    where ψ(t)=1t1χ(s)ds for t>0, and

    {h(t)=0,0tE(0)χ(E(0)),h1(t)=t+ψ1(t+ψ(E(0)))χ(ψ1(t+ψ(E(0)))),t>0.

    Proof. Since E(t)0, this implies E(0)E(t0) for all tt00. If E(t0)=0 for t00, then E(t)=0 for all tt00, and there is nothing to prove in this case. As in [21], we assume that E(t)>0 for t0 without loss of generality. Let

    L(s)=sχ(E(t))dt,s0.

    We have L(s)E(s),s0. The functional L is positive, decreasing, and of class C1(0,) satisfying

    L(s)=χ(E(s))χ(L(s)),s0.

    Since the functional χ is decreasing, we have

    χ(L(s))=L(s)χ(L(s))1,s0.

    Integrating this differential equation over (0,t), we get

    χ(L(t))t+ψ(E(0)),t0. (3.3)

    Since χ is convex and χ(0)=0, we have

    χ(s)sχ(1),s[0,1]andχ(s)sχ(1),s1.

    We find limt0ψ(t)= and [ψ(E(0)),))Image(ψ), then (3.3) imply that

    L(t)ψ1(t+ψ(E(0))),t0. (3.4)

    Now, using the properties of χ and E, we have

    L(s)tsχ(E(τ))dτ(ts)χ(E(t)),ts0. (3.5)

    Since limt0χ(t)=,χ(0)=0, and χ is increasing, (3.4) and (3.5) imply that

    E(t)χ1(infs[0,t)ψ1(t+ψ(E(0)))ts),t>0. (3.6)

    Now, let t>E(0)χ(E(0)) and J(s)=ψ1(t+ψ(E(0)))ts,s[0,t).

    The function J is differentiable, then we have

    J(s)=(ts)2[ψ1(s+ψ(E(0)))(ts)χ(ψ1(s+ψ(E(0))))]. (3.7)

    Thus, J(s)=0K(s)=t and J(s)<0K(s)<t, where

    K(t)=t+ψ1(t+ψ(E(0)))χ(ψ1(t+ψ(E(0)))).

    Since K(0)=E(0)χ(E(0)) and K is increasing (because ψ1 is decreasing and ssχ(s),s>0 is nonincreasing thanks to the fact χ is convex), for t>E(0)χ(E(0)), we have

    infs[0,t)J(K1(t))=J(h(t)).

    Since h satisfies J(h(t))=0, we conclude from (3.6) our desired estimate (3.2).

    We define the energy associated to the problem (1.1)–(1.3) by the following formula

    E(t)=12[ρ1h1L0u2tdx+E1h1L0u2xdx+ρ3h3L0v2tdx+E3h3L0v2xdx+ρhL0w2tdx+EIL0w2xxdx+kL0(u+v+αwx)2dx]. (3.8)

    Lemma 3.3. The energy E(t) satisfies

    E(t)α1(t)L0utf1(ut)dxα2(t)L0vtf2(vt)dxα3(t)L0wtf3(wt)dx0. (3.9)

    Proof. Multiplying (1.1)1 by ut, (1.1)2 by vt, (1.1)3 by wt and integrating each of them by parts over (0,L), we get the desired result.

    In this section, we state and prove our main result. For this purpose, we establish some lemmas. From now on, we denote by c various positive constants, which may be different at different occurrences. For simplicity, we consider the case α(t)=α1(t)=α2(t)=α3(t).

    Lemma 4.1. (Case: Fi is linear) For T>S0, the energy functional of the system (1.1)–(1.3) satisfies

    TSα(t)E(t)dtcE(S). (4.1)

    Proof. Multiplying (1.1)1 by αu and integrating over (S,T)×(0,L), we obtain

    TSα(t)L0u[ρ1h1uttE1h1uxxk(u+v+αwx)+α(t)f1(ut)]dxdt=0.

    Notice that

    uttu=(utu)tu2t.

    Using integration by parts and the boundary conditions, we get

    TSα(t)L0ρ1h1u2tdxdt+TSα(t)L0E1h1u2xdxdtTSα(t)L0ku(u+v+αwx)dxdt=ρ1h1[α(t)L0uutdx]TSTSα2(t)L0uf1(ut)dxdt. (4.2)

    Adding 2TSα(t)L0ρ1h1u2tdxdt to both sides of the above equation, we have

    TSα(t)L0ρ1h1u2tdxdt+TSα(t)L0E1h1u2xdxdtTSα(t)L0ku(u+v+αwx)dxdt=ρ1h1[α(t)L0uutdx]TSTSα2(t)L0uf1(ut)dxdt+2TSα(t)L0ρ1h1u2tdxdt. (4.3)

    Similarly, multiplying (1.1)2 by α(t)v and (1.1)3 by α(t)w, and integrating each of them over (S,T)×(0,L), we obtain

    TSα(t)L0ρ3h3v2tdxdt+TSα(t)L0E3h3v2xdxdt+TSα(t)L0kv(u+v+αwx)dxdt=ρ3h3[L0α(t)vvtdx]TSTSα2(t)L0vf2(vt)dxdt+2TSα(t)L0ρ3h3v2tdxdt, (4.4)

    and

    TSα(t)L0ρhw2tdxdt+TSα(t)L0EIw2xxdxdtTSα(t)L0kαw(u+v+αwx)xdxdt=ρh[L0α(t)wwtdx]TSTSα2(t)L0wf3(wt)dxdt+2TSα(t)L0ρhw2tdxdt. (4.5)

    Recalling the definition of E, and from (4.2)–(4.5), we get

    2TSα(t)E(t)dtρ1h1[α(t)L0uutdx]TSρ3h3[α(t)L0vvtdx]TSρh[α(t)L0wwtdx]TSTSα2(t)L0uf1(ut)dxdtTSα2(t)L0vf2(vt)dxdtTSα2(t)L0wf3(wt)dxdt+2TSα(t)L0ρ1h1u2tdxdt+2TSα(t)L0ρ3h3v2tdxdt+2TSα(t)L0ρhw2tdxdt. (4.6)

    Now, using Young's and Poincaré inequalities, we get for any εi>0(i=1,2,3),

    L0uutdxε1L0u2dx+14ε1L0u2tdxcpε1L0u2xdx+14ε1L0u2tdxcE(t),L0zztdxε2L0z2dx+14ε2L0z2tdxcpε2L0z2dx+14ε2L0z2tdxcE(t),L0wwtdxε3L0w2dx+14ε3L0w2tdxcpε3L0w2dx+14ε3L0w2tdxcE(t), (4.7)

    which implies that

    [α(t)L0uutdx]TScα(S)E(S)cα(S)E(T)cE(S),
    [α(t)L0vvtdx]TScE(S),

    and

    [α(t)L0wwtdx]TScE(S).

    Using (H1), the fact that F1 is linear, Hölder and Poincaré inequalities, we obtain

    α2(t)L0uf1(ut)dxα2(t)(L0|u|2dx)12(L0|f1(ut)|2dx)12α32||u||2(αL0utf1(ut)dx)12cE12(t)(E(t))12. (4.8)

    Applying Young's inequality on the term E12(t)(E(t))12, we obtain for ε>0

    α2(t)L0uf1(ut)dxcα(t)(εE(t)CεE(t))cεα(t)E(t)CεE(t), (4.9)

    which implies that

    TSα2(t)(L0(uf1(ut))dx)dtcεTSα(t)E(t)dt+CεE(S). (4.10)

    In the same way, we have

    TSα2(t)(L0(vf2(vt))dx)dtcεTSα(t)E(t)dt+CεE(S), (4.11)

    and

    TSα2(t)(L0(wf3(wt))dx)dtcεTSα(t)E(t)dt+CεE(S). (4.12)

    Finally, using (H1), and the fact that F1 is linear, we find that

    2TSα(t)L0ρ1h1u2tdxdtcTSα(t)L0utf1(ut)dxdtcTS(E(t))dtcE(S). (4.13)

    Similarly, we get

    2TSα(t)L0ρ3h3v2tdxdtcE(S),and2TSα(t)L0ρhw2tdxdtcE(S). (4.14)

    We combine the above estimates and take ε small enough to get the estimate (4.1).

    Lemma 4.2. (Case: Fi are nonlinear) For T>S0, the energy functional of the system (1.1)–(1.3) satisfies

    TSα(t)Λ(E(t))dtcΛ(E(S))+cTSα(t)Λ(E)EL0(|ut|2+|uf1(ut)|)dxdt+cTSα(t)Λ(E)EL0(|vt|2+|vf2(vt)|)dxdt+cTSα(t)Λ(E)EL0(|vt|2+|vf3(wt)|)dxdt, (4.15)

    where Λ is convex, increasing, and of class C1[0,) such that Λ(0)=0.

    Proof. We multiply (1.1)1 by α(t)Λ(E)Eu and integrate over (0,L)×(S,T) to get

    ρ1h1TSα(t)Λ(E)EL0u2tdxdt+E1h1TSα(t)Λ(E)EL0u2xdxdtkTSα(t)Λ(E)EL0u(u+v+αwx)dxdt=ρ1h1TSα(t)Λ(E)EL0(uut)tdxdtTSα2(t)Λ(E)EL0uf1(ut)dxdt+2ρ1h1TSα(t)Λ(E)EL0u2tdxdt. (4.16)

    Also, we multiply (1.1)2 by α(t)Λ(E)Ev and integrate over (0,L)×(S,T) to get

    ρ3h3TSα(t)Λ(E)EL0v2tdxdt+E3h3TSα(t)Λ(E)EL0v2xdxdt+kTSα(t)Λ(E)EL0v(u+v+αwx)dxdt=ρ3h3TSα(t)Λ(E)EL0(vvt)tdxdtTSα2(t)Λ(E)EL0vf2(vt)dxdt+2ρ3h3TSα(t)Λ(E)EL0v2tdxdt. (4.17)

    Similarly, we multiply (1.1)3 by α(t)Λ(E)Ew and integrate over (0,L)×(S,T) to get

    ρhTSα(t)Λ(E)EL0w2tdxdt+EhTSα(t)Λ(E)EL0w2xxdxdt+αkTSα(t)Λ(E)EL0wx(u+v+αwx)dxdt=ρhTSα(t)Λ(E)EL0(wwt)tdxdtTSα2(t)Λ(E)EL0wf3(wt)dxdt+2ρhTSα(t)Λ(E)EL0w2tdxdt. (4.18)

    Integrating by parts in the first term of the righthand side of the Eq (4.16), we find that Eq (4.16) becomes

    ρ1h1TSα(t)Λ(E)EL0u2tdxdt+E1h1TSα(t)Λ(E)EL0u2xdxdtkTSα(t)Λ(E)EL0u(u+v+αwx)dxdt=ρ1h1[α(t)Λ(E)EL0uutdx]TS+ρ1h1TSL0ut(α(t)Λ(E)Eu+α(t)(Λ(E)E)u)dxdt+2ρ1h1TSα(t)Λ(E)EL0u2tdxdtTSα2(t)Λ(E)EL0uf1(ut)dxdt.

    Using the fact that L0uutdxcE(t), the properties of α(t), and the facts that the function sΛ(s)s is nondecreasing and E is nonincreasing, we have

    TSα(t)Λ(E)EL0uutdxdtcTSα(t)Λ(E)EE(t)dtcΛ(E(S))TSα(t)dtcΛ(E(S)). (4.19)

    Similarly, we get

    TSα(t)(Λ(E)E)L0uutdxdtE(S)TSα(t)(Λ(E)E)dtE(S)[α(t)Λ(E)E]TSE(S)TSα(t)Λ(E)EdtE(S)(α(T)Λ(E(T))E(T)α(S)Λ(E(S))E(S))E(S)Λ(E(S))E(S)TSα(t)dtE(S)α(T)Λ(E(T))E(T)Λ(E(S))(α(T)α(S))E(S)α(S)Λ(E(S))E(S)+Λ(E(S))α(S)cΛ(E(S)). (4.20)

    Combining (4.19)–(4.20), we have

    ρ1h1TSα(t)Λ(E)EL0u2tdxdt+E1h1TSα(t)Λ(E)EL0u2xdxdtkTSα(t)Λ(E)EL0u(u+v+αwx)dxdtcΛ(E(S))+2ρ1h1TSα(t)Λ(E)EL0u2tdxdtTSα2(t)Λ(E)EL0uf1(ut)dxdt.

    Similarly, we have

    ρ3h3TSα(t)Λ(E)EL0v2tdxdt+E3h3TSα(t)Λ(E)EL0v2xdxdt+kTSα(t)Λ(E)EL0v(u+v+αwx)dxdtcΛ(E(S))+2ρ3h3TSα(t)Λ(E)EL0v2tdxdtTSα2(t)Λ(E)EL0vf2(vt)dxdt,

    and

    ρhTSα(t)Λ(E)EL0w2tdxdt+EhTSα(t)Λ(E)EL0w2xxdxdt+αkTSα(t)Λ(E)EL0wx(u+v+αwx)dxdtcΛ(E(S))+2ρhTSα(t)Λ(E)EL0w2tdxdtTSα2(t)Λ(E)EL0wf3(wt)dxdt.

    Gathering all the above estimations by using (3.8), we obtain

    TSα(t)Λ(E(t))dtcΛ(E(S))+cTSα2(t)Λ(E)EL0(|ut|2+|uf1(ut)|)dxdt+cTSα2(t)Λ(E)EL0(|vt|2+|vf2(vt)|)dxdt+cTSα2(t)Λ(E)EL0(|wt|2+|wf3(wt)|)dxdt. (4.21)

    This completes the proof of the estimate (4.15).

    In order to finalize the proof of our result, we let

    Λ(s)=2ε0sFi(ε20s), Ψi(s)=Fi(s2),

    where Fi and Ψi denote the dual functions of the convex functions Fi and Ψi, respectively, in the sense of Young (see Arnold [22], pp. 64).

    Lemma 4.3. Suppose Fi(i=1,2,3) are nonlinear, then the following estimates

    Fi(Λ(s)s)Λ(s)s(Fi)1(Λ(s)s) (4.22)

    and

    Ψi(Λ(s)s)ε0Λ(s), (4.23)

    hold.

    Proof. We prove for i=1, and the remaining are similar. Since F1 and Ψ1 are the dual functions of the convex functions F1 and Ψ1, respectively, then

    F1(s)=s(F1)1(s)F1[(F1)1(s)]s(F1)1(s) (4.24)

    and

    Ψ1(s)=s(Ψ1)1(s)Ψ1[(Ψ1)1(s)]s(Ψ1)1(s). (4.25)

    Using (4.24) and the definition of Λ, we obtain (4.22).

    For the proof of (4.23), we use (4.25) and the definitions of Ψ1 and Λ to obtain

    Λ(s)s(Ψ1)1(Λ(s)s)2ε0sF1(ε20s)(Ψ1)1(2ε0sF1(ε20s))=2ε0sF1(ε20s)(Ψ1)1(Ψ1(ε0s))=2ε20sF1(ε20s)=ε0Λ(s). (4.26)

    Now, we state and prove our main decay results.

    Theorem 4.4. Let (u0,u1)×(z0,z1)[H20(0,L)×L2(0,L)]2. Assume that (H1) and (H2) hold, then there exist positive constants k and c such that, for t large, the solution of the system (1.1)–(1.3) satisfies

    E(t)kect0α(s)ds,if Fi is linear,  (4.27)
    E(t)ψ1(h(˜α(t))+ψ(E(0))),t0,if Fi are nonlinear,  (4.28)

    where ˜α(t)=t0α(t)dt, ψ(t)=1t1χ(s)ds, χ(t)=cΛ(t), and

    {h(t)=0,0tE(0)χ(E(0)),h1(t)=t+ψ1(t+ψ(E(0)))χ(ψ1(t+ψ(E(0)))),t>0.

    Proof. To establish (4.27), we use (4.1), and Lemma 3.1 for γ(t)=t0α(s)ds. Consequently, the result follows.

    For the proof of (4.28), we re-estimate the terms of (4.15) as follows:

    We consider the following partition of the domain (0,L):

    Ω1={x(0,L):|ut|ε1},Ω2={x(0,L):|ut|ε1}.

    So,

    TSα(t)Λ(E)EΩ1(|ut|2+|uf1(ut)|)dxdt=TSα(t)Λ(E)EΩ1|ut|2dxdt+TSα(t)Λ(E)EΩ1|uf1(ut)|dxdt:=I1+I2.

    Using the definition of Ω1, condition (H1), and (3.9), we have

    I1cTSα(t)Λ(E)EΩ1utf1(ut)dxdtcTSΛ(E)E(E(t))dtcΛ(E(S)). (4.29)

    After applying Young's inequality, and the condition (H1), we obtain

    I2εTSα(t)Λ2(E)Edt+c(ε)TSα(t)Ω1|f1(ut)|2dt. (4.30)

    The definition of Ω1, the condition (H1), (3.8), (3.9), and (4.30) lead to

    I2εTSα(t)Λ2(E)Edt+c(ε)TSα(t)Ω1utf1(ut)dxdtεTSα(t)Λ2(E)Edt+c(ε)E(S). (4.31)

    Using the definition of Λ, and the convexity of F1, (4.31) becomes

    I2εTSα(t)Λ2(E)Edt+cεE(S)=2εε0TSα(t)Λ(E)F1(ε20E(t))dt+cεE(S)2εε0TSα(t)Λ(E)F1(ε20E(0))dt+cεE(S)2cεε0TSα(t)Λ(E)dt+cεE(S). (4.32)

    Using Young's inequality, Jensen's inequality, condition (H1), and (3.8), we get

    TSα(t)Λ(E)EΩ2(|ut|2+|uf1(ut)|)dxdtTSα(t)Λ(E)EΩ2F11(utf1(ut))dxdt+TSα(t)Λ(E)Eu12(Ω2F11(utf1(ut))dx)12dxdtLTSα(t)Λ(E)EF11(1LL0utf1(ut)dx)dt+TSα(t)Λ(E)EELF11(1LL0utf1(ut)dx)dt. (4.33)

    We apply the generalized Young inequality

    \begin{equation*} AB\le F^*(A)+F(B) \end{equation*}

    to the first term of (4.33) with A = \frac{\Lambda(E)}{E} and B = F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right) to get

    \begin{equation} \begin{aligned} \frac{\Lambda(E)}{E}F_1^{-1}\left(\frac{1}{L}\int_0^L u_tf_1(u_t)dx\right)\le F_1^*\left(\frac{\Lambda(E)}{E}\right)+ \frac{1}{L}\int_0^L u_t f_1(u_t)dx. \end{aligned} \end{equation} (4.34)

    We then apply it to the second term of (4.33) with A = \frac{\Lambda(E)}{E} \sqrt{E} and

    B = \sqrt{L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right)} to obtain

    \begin{equation} \begin{aligned} \frac{\Lambda(E)}{E} \sqrt{E}\; \sqrt{L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right)}\le F_1^*\left( \frac{\Lambda(E)}{E} \sqrt{E} \right) +L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right). \end{aligned} \end{equation} (4.35)

    Combining (4.33)–(4.35), using (4.22), and (4.23), we arrive at

    \begin{equation} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\; \int_{\Omega_2}\left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\\ &\le c \int_{S}^{T} \alpha(t) \left( F_1^*\left(\frac{\Lambda(E)}{E} \sqrt{E}\right)+F_1^*\left( \frac{\Lambda(E)}{E}\right)\right)dt+c\int_{S}^{T}\alpha(t)\int_{\Omega}u_t f_1(u_t)dxdt\\ &\le c \int_{S}^{T} \alpha(t) \left(\varepsilon_0+\frac{(F_1^{\prime})^{-1}\left(\frac{\Lambda(E)}{E}\right)}{E}\right)\Lambda(E)dt+cE(S). \end{aligned} \end{equation} (4.36)

    Using the fact that s \to (F_1^{\prime})^{-1}(s) is nondecreasing, we deduce that, for 0 < \varepsilon_0\le \sqrt{E(0)} ,

    \begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_{\Omega_2}\left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\le c\varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt+cE(S). \end{aligned} \end{equation*}

    Therefore, combining (4.15), (4.29), and (4.32), we find that

    \begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*}

    and similarly,

    \begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert v_t\vert^2+\vert v f_2(v_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert w_t\vert^2+\vert w f_3(w_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*}

    Combining all the above estimations with choosing \varepsilon and \varepsilon_0 small enough, we arrive at

    \begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) \Lambda(E(t))dt\le c \left( 1+\frac{\Lambda(E(S))}{E(S)}\right)E(S). \end{aligned} \end{equation*}

    Using the facts that E is nonincreasing and s \to \frac{\Lambda(s)}{s} is nondecareasing, we can deduce that

    \begin{equation*} \int_{S}^{+\infty}\alpha(t) \Lambda(E(t))dt \le cE(S). \end{equation*}

    Now, let \tilde{E} = E\circ \tilde{\alpha}^{-1} , where \tilde{\alpha}(t) = \int_{0}^{t}\alpha(s)ds , then we deduce from this inequality that

    \begin{equation*} \begin{aligned} \int_{S}^{\infty} \Lambda(\tilde{E}(t))dt& = \int_{S}^{\infty} \Lambda(E(\tilde{\alpha}^{-1}(t)))dt\\ & = \int_{\tilde{\alpha}^{-1}(S)}^{\infty} \alpha(\eta)\Lambda(E(\eta))d\eta\\ &\le cE\left(\tilde{\alpha}^{-1}(S) \right)\\ &\le c \tilde{E}(S). \end{aligned} \end{equation*}

    Using Lemma 3.1 for \tilde{E} and \chi(s) = c \Lambda(s) , we deduce from (3.1) the following estimate

    \begin{equation*} \tilde{E}(t)\le \psi^{-1}\left(h(t)+\psi\left(E(0)\right)\right) \end{equation*}

    which, using the definition of \tilde{E} and the change of variables, gives (4.28).

    Remark 4.1. The stability result (4.28) is a decay result. Indeed,

    \begin{equation*} \begin{aligned} h^{-1}(t)& = t+\frac{\psi^{-1}\left(t+\psi(E(0))\right)}{\chi\left(\psi^{-1}(t+\psi(E(0)))\right)}\\ & = t+\frac{c}{2\varepsilon_0 c F^{\prime}\left(\varepsilon_0^2 \psi^{-1}(t+r) \right)}\\ &\ge t+\frac{c}{2\varepsilon_0 c F^{\prime}\left(\varepsilon_0^2 \psi^{-1}(r) \right)}\\ &\ge t+\tilde{c}, \end{aligned} \end{equation*}

    where F = \min \{ F_i \} and i = 1, 2, 3. Hence, \lim_{t\to\infty}h^{-1}(t) = \infty , which implies that \lim_{t \to\infty}h(t) = \infty . Using the convexity of F , we have

    \begin{equation*} \begin{aligned} \psi(t)& = \int_{t}^{1}\frac{1}{\chi(s)}ds = \int_{t}^{1}\frac{c}{2\varepsilon_0 sF^{\prime}\left(\varepsilon_0^2s\right)}\ge \int_{t}^{1}\frac{c}{sF^{\prime}\left(\varepsilon_0^2\right)}\ge c \left[\ln{\vert s\vert}\right]_{t}^{1} = -c\ln{t}, \end{aligned} \end{equation*}

    where F = \min \{ F_i \} and i = 1, 2, 3. Therefore, \lim_{t\to 0^+}\psi(t) = \infty , which leads to \lim_{t\to \infty}\psi^{-1}(t) = 0 .

    Example 1. Let f_i(s) = s^m , (i = 1, 2, 3) , where m\ge 1 , then the function F ( F = \min \{ F_i \} ) is defined in the neighborhood of zero by

    F(s) = c s^{\frac{m+1}{2}}

    which gives, near zero,

    \chi(s) = \frac{c(m+1)}{2} s^{\frac{m+1}{2}}.

    So,

    \begin{equation*} \psi(t) = c \int_{t}^{1}\frac{2}{(m+1)s^{\frac{m+1}{2}}}ds = \left\{ \begin{array}{ll} \frac{c}{t^{\frac{m-1}{2}}}, & if ~~~ {m > 1 ;} \\ \\ -c\ln{t}, & if ~~~ {m = 1 , } \end{array} \right. \end{equation*}

    then in the neighborhood of \infty ,

    \begin{equation*} \psi^{-1}(t) = \left\{ \begin{array}{ll} c t^{-\frac{2}{m-1}}, & if ~~~ {m > 1 ;} \\ c e^{-t}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*}

    Using the fact that h(t) = t as t goes to infinity, we obtain from (4.27) and (4.28):

    \begin{equation*} E(t)\le \left\{ \begin{array}{ll} c \left(\int_{0}^{t}\alpha(s)ds\right)^{-\frac{2}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{-{\int_{0}^{t}\alpha(s)ds}}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*}

    Example 2. Let f_i(s) = s^m \sqrt{-\ln{s}} , (i = 1, 2, 3) , where m\ge 1 , then the function F is defined in the neighborhood of zero by

    F(s) = c s^{\frac{m+1}{2}} \sqrt{-\ln{\sqrt{s}}},

    which gives, near zero,

    \chi(s) = cs^{\frac{m+1}{2}}\left(-\ln{\sqrt{s}}\right)^{-\frac{1}{2}}\left(\frac{m+1}{2}\left(-\ln{\sqrt{s}}\right)-\frac{1}{4}\right).

    Therefore,

    \begin{equation*} \begin{aligned} \psi(t) = &c \int_{t}^{1}\frac{1}{ s^{\frac{m+1}{2}}\left(-\ln{\sqrt{s}}\right)^{-\frac{1}{2}}\left(\frac{m+1}{2}\left(-\ln{\sqrt{s}}\right)-\frac{1}{4}\right)}ds\\ = &c\int_{1}^{\frac{1}{\sqrt{t}}}\frac{\tau^{m-2}}{(\ln{\tau})^{-\frac{1}{2}} \left(\frac{m+1}{2}\ln{\tau}-\frac{1}{4} \right)}d\tau\\ = &\left\{ \begin{array}{ll} \frac{c}{t^{\frac{m-1}{2}}\sqrt{-\ln{t} }}, & if ~~~ {m > 1 ;} \\ \\ c\sqrt{-\ln{t}}, & if ~~~ {m = 1 , } \end{array} \right. \end{aligned} \end{equation*}

    then in the neighborhood of \infty ,

    \begin{equation*} \psi^{-1}(t) = \left\{ \begin{array}{ll} c t^{-\frac{2}{m-1}}\left( \ln{t} \right)^{-\frac{1}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{-t^2}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*}

    Using the fact that h(t) = t as t goes to infinity, we obtain

    \begin{equation*} E(t)\le \left\{ \begin{array}{ll} c \left(\int_{0}^{t}\alpha(s)ds\right)^{-\frac{2}{m-1}} \left(\ln{\left(\int_{0}^{t}\alpha(s)ds\right)}\right)^{-\frac{1}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{- \left(\int_{0}^{t}\alpha(s)ds\right)^2}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*}

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. The support provided by the Interdisciplinary Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2402, is also greatly acknowledged.

    The authors declare that there is no conflict of interest.



    [1] M. Nazeer, F. Hussain, M. Ijaz Khan, Asad-ur-Rehman, E. R. El-Zahar, Y. M. Chu, et al., Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Appl. Math. Comput., 420 (2022), 126868. https://doi.org/10.1016/j.amc.2021.126868 doi: 10.1016/j.amc.2021.126868
    [2] Y. M. Chu, B. M. Shankaralingappa, B. J. Gireesha, F. Alzahrani, M. Ijaz Khan, S. U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Appl. Math. Comput., 419 (2022), 126883. https://doi.org/10.1016/j.amc.2021.126883 doi: 10.1016/j.amc.2021.126883
    [3] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
    [4] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [5] Z. Denton, A. S. Vatsala, Fractional integral inequalities and applications, Comput. Math. Appl., 59 (2010), 1087–1094. https://doi.org/10.1016/j.camwa.2009.05.012 doi: 10.1016/j.camwa.2009.05.012
    [6] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [7] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [8] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [9] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
    [10] A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948–956. https://doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
    [11] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2020), 1225. https://doi.org/10.3390/math7121225 doi: 10.3390/math7121225
    [12] R. A. Yan, S. R. Sun, Z. L. Han, Existence of solutions of boundary value problems for caputo fractional differential equations on time scales, Bull. Iranian Math. soc., 42 (2016), 247–262.
    [13] A. Atangana, D. Baleanu, Application of fixed point theorem for stability analysis of a nonlinear Schördinger with Caputo-Liouville derivative, Filomat, 31 (2017), 2243–2248. https://doi.org/10.2298/FIL1708243A doi: 10.2298/FIL1708243A
    [14] F. Jarad, S. Harikrishnan, K. Shah, K. Kanagarajan, Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative, Discrete Cont. Dyn. S, 13 (2020), 723–739. https://doi.org/10.3934/dcdss.2020040 doi: 10.3934/dcdss.2020040
    [15] O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Method. H., 30 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
    [16] S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, J. F. Gómez-Aguilar, O. A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 96 (2021), 094006. https://doi.org/10.1088/1402-4896/ac0867 doi: 10.1088/1402-4896/ac0867
    [17] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [18] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [19] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10 (2015), 109–137. https://doi.org/10.13140/RG.2.1.1744.9444 doi: 10.13140/RG.2.1.1744.9444
    [20] T. H. Zhao, W. M. Qian, Y. M. Chu, Sharp power mean bounds for the tangent and hyperbolic sine means, J. Math. Inequal., 15 (2021), 1459–1472. https://doi.org/10.7153/jmi-2021-15-100 doi: 10.7153/jmi-2021-15-100
    [21] S. Rashid, E. I. Abouelmagd, S. Sultana, Y. M. Chu, New developments in weighted n-fold type inequalities via discrete generalized {\rm{\hat h}}-proportional fractional operators, Fractals, 30 (2022), 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
    [22] S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical \hbar-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. https://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
    [23] M. Al Qurashi, S. Rashid, S. Sultana, H. Ahmad, K. A. Gepreel, New formulation for discrete dynamical type inequalities via h-discrete fractional operator pertaining to nonsingular kernel, Math. Biosci. Eng., 18 (2021), 1794–1812. https://doi.org/10.3934/mbe.2021093 doi: 10.3934/mbe.2021093
    [24] S. S. Zhou, S. Rashid, S. Parveen, A. O. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Math., 6 (2021), 4507–4525. https://doi.org/10.3934/math.2021267 doi: 10.3934/math.2021267
    [25] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7
    [26] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [27] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on \Psi-Hilfer derivative fractional impulsive integro-differential equations, Math. Method. Appl. Sci., 45 (2022), 8045–8059. https://doi.org/10.1002/mma.7954 doi: 10.1002/mma.7954
    [28] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [29] S. Rashid, F. Jarad, M. A. Noor, Grüss-type integrals inequalities via generalized proportional fractional operators, RACSAM, 114 (2020), 93. https://doi.org/10.1007/s13398-020-00823-5 doi: 10.1007/s13398-020-00823-5
    [30] I. Ahmad, P. Kumam, F. Jarad, P. Borisut, Jirakitpuwapat, On Hilfer generalized proportional fractional derivative, Adv. Differ. Equ., 2020 (2020), 329. https://doi.org/10.1186/s13662-020-02792-w doi: 10.1186/s13662-020-02792-w
    [31] K. Shah, D. Vivek, K. Kanagarajan, Dynamics and stability of \alpha-fractional pantograph equations with boundary conditions, Bol. Soc. Paran. Mat., 39 (2021), 43–55. https://doi.org/10.5269/bspm.41154 doi: 10.5269/bspm.41154
    [32] D. Vivek, K. Kanagarajan, E. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math., 15 (2018), 15. https://doi.org/10.1007/s00009-017-1061-0 doi: 10.1007/s00009-017-1061-0
    [33] O. A. Arqub, Reproducing Kernel algorithm for the analytical-numerical solutions of nonlinear systems of singular periodic boundary value problems, Math. Probl. Eng., 2015 (2015), 518406. https://doi.org/10.1155/2015/518406 doi: 10.1155/2015/518406
    [34] S. Djennadi, N. Shawagfeh, O. A. Arqub, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos Soliton. Fract., 150 (2021), 111127. https://doi.org/10.1016/j.chaos.2021.111127 doi: 10.1016/j.chaos.2021.111127
    [35] W. Shammakh, H. Z. Alzum, Existence results for nonlinear fractional boundary value problem involving generalized proportional derivative, Adv. Differ. Equ., 2019 (2019), 94. https://doi.org/10.1186/s13662-019-2038-z doi: 10.1186/s13662-019-2038-z
    [36] A. Granas, J. Dugundi, Fixed point theory, New York: Springer, 2003.
    [37] M. Krasnoselskii, Two remarks about the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
  • This article has been cited by:

    1. Mohammed Abu Saleem, On soft covering spaces in soft topological spaces, 2024, 9, 2473-6988, 18134, 10.3934/math.2024885
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2308) PDF downloads(247) Cited by(5)

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog