Research article

A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method

  • Received: 03 May 2022 Revised: 19 August 2022 Accepted: 05 September 2022 Published: 30 September 2022
  • MSC : 65M70, 65L20

  • In this paper, we will present a collocation approach based on barycentric interpolation functions and finite difference formulation to study the approximate solution of nonlinear Schrödinger equation. We discretize the time derivative by Crank-Nicolson scheme and bring barycentric interpolation functions into action for spatial discretization. Furthermore, consistency analysis of semi discrete collocation scheme is given. For the nonlinear term, we use Newton iterative method to derive the corresponding linear algebraic equations. Finally, numerical examples show that the numerical scheme has high precision and satisfies the mass and energy conservation.

    Citation: Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng. A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method[J]. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017

    Related Papers:

  • In this paper, we will present a collocation approach based on barycentric interpolation functions and finite difference formulation to study the approximate solution of nonlinear Schrödinger equation. We discretize the time derivative by Crank-Nicolson scheme and bring barycentric interpolation functions into action for spatial discretization. Furthermore, consistency analysis of semi discrete collocation scheme is given. For the nonlinear term, we use Newton iterative method to derive the corresponding linear algebraic equations. Finally, numerical examples show that the numerical scheme has high precision and satisfies the mass and energy conservation.



    加载中


    [1] E. Schrödinger, The present status of quantum mechanics, Die Naturwissenschaften, 23 (1935), 48.
    [2] Y. Xu, C. W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equations, J. Comput. Phys., 205 (2005), 72–97. https://doi.org/10.1016/j.jcp.2004.11.001 doi: 10.1016/j.jcp.2004.11.001
    [3] J. Wang, M. Li, J. Li, Superconvergence analysis for nonlinear Schrödinger equation with two-grid finite element method, Appl. Math. Lett., 122 (2021), 107553. https://doi.org/10.1016/j.aml.2021.107553 doi: 10.1016/j.aml.2021.107553
    [4] H. L. Liao, Z. Z. Sun, H. S. Shi, Maximum norm error analysis of explicit schemes for two-dimensional nonlinear Schrödinger equations, Scientia Sinica Math., 40 (2010), 827–842. https://doi.org/10.1360/012009-846 doi: 10.1360/012009-846
    [5] Z. Z. Sun. The stability and convergence of an explicit difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions, J. Computat. Phys., 219 (2006), 879–898. https://doi.org/10.1016/j.jcp.2006.07.001
    [6] H. E. Ibarra-Villalon, O. Pottiez, A. Gómez-Vieyra, J. P. Lauterio-Cruz, Y. E. Bracamontes-Rodriguez, Numerical approaches for solving the nonlinear Schrödinger equation in the nonlinear fiber optics formalism, J. Opt., 22 (2020), 043501. https://doi.org/10.1088/2040-8986/ab739e doi: 10.1088/2040-8986/ab739e
    [7] J. A. Mackenzie, W. R. Mekwi, An hr-adaptive method for the cubic nonlinear Schrödinger equation, J. Comput. Appl. Math., 364 (2000), 11232. https://doi.org/10.1016/j.cam.2019.06.036 doi: 10.1016/j.cam.2019.06.036
    [8] S. Zhai, D. Wang, Z. Weng, X. Zhao, Error analysis and numerical simulations of Strang splitting method for space fractional nonlinear Schrödinger equation, J. Sci. Comput., 81 (2019), 965–989. https://doi.org/10.1007/s10915-019-01050-w doi: 10.1007/s10915-019-01050-w
    [9] X. Feng, B. Li, S. Ma, High-order mass-and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 59 (2021), 1566–1591. https://doi.org/10.1137/20M1344998 doi: 10.1137/20M1344998
    [10] H. Hu, Y. Chen, Analysis of finite element two-grid algorithms for two-dimensional nonlinear Schrödinger equation with wave operator, J. Comput. Appl. Math., 397 (2021), 113647. https://doi.org/10.1016/j.cam.2021.113647 doi: 10.1016/j.cam.2021.113647
    [11] A. Iqbal, N. N. Abd Hamid, A. I. M. Ismail, Cubic B-spline Galerkin method for numerical solution of the coupled nonlinear Schrödinger equation, Math. Comput. Simul., 174 (2020), 32–44. https://doi.org/10.1016/j.matcom.2020.02.017 doi: 10.1016/j.matcom.2020.02.017
    [12] J. Cai, H. Zhang, Efficient schemes for the damped nonlinear Schrödinger equation in high dimensions, Appl. Math. Lett., 102 (2020), 106158. https://doi.org/10.1016/j.aml.2019.106158 doi: 10.1016/j.aml.2019.106158
    [13] Z. Xu, Y. Han, H. Shao, Z. Su, G. He, D. Zhang, High-precision stress determination in photoelasticity, Appl. Math. Mech., 43 (2022), 557–570. https://doi.org/10.1007/s10483-022-2830-9 doi: 10.1007/s10483-022-2830-9
    [14] H. Liu, J. Huang, Y. Pan, J. Zhang, Barycentric interpolation collocation methods for solving linear and nonlinear high-dimensional Fredholm integral equations, J. Comput. Appl. math., 327 (2018), 141–154. https://doi.org/10.1016/j.cam.2017.06.004 doi: 10.1016/j.cam.2017.06.004
    [15] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Meth. Part. D. E., 37 (2021), 533–545. https://doi.org/10.1002/num.22539 doi: 10.1002/num.22539
    [16] A. Rezazadeh, Z. Avazzadeh, Barycentric-Legendre interpolation method for solving two-dimensional fractional cable equation in neuronal dynamics, Int. J. Appl. Comput. Math., 8 (2022), 80. https://doi.org/10.1007/s40819-022-01273-w doi: 10.1007/s40819-022-01273-w
    [17] Y. Deng, Z. Weng, Operator splitting scheme based on barycentric Lagrange interpolation collocation method for the Allen-Cahn equation, J. Appl. Math. Comput., 68 (2022), 3347–3365. https://doi.org/10.1007/s12190-021-01666-y doi: 10.1007/s12190-021-01666-y
    [18] E. S. Shoukralla, B. M. Ahmed, M. Sayed, A. Saeed, Interpolation method for solving Volterra integral equations with weakly singular kernel using an advanced barycentric Lagrange formula, Ain Shams Eng. J., 13 (2022), 101743. https://doi.org/10.1016/j.asej.2022.101743 doi: 10.1016/j.asej.2022.101743
    [19] S. Yi, L. Yao, A steady barycentric Lagrange interpolation method for the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis, Numer. Meth. Part. D. E., 35 (2019), 1694–1716. https://doi.org/10.1002/num.22371 doi: 10.1002/num.22371
    [20] Y. Hu, A. Peng, L. Chen, Y. Tong, Z. Weng, Analysis of the barycentric interpolation collocation scheme for the Burgers equation, Sci. Asia, 47 (2021), 758–765. https://doi.org/10.2306/scienceasia1513-1874.2021.081 doi: 10.2306/scienceasia1513-1874.2021.081
    [21] Z. Sun, Numerical methods of partial differential equations, Beijing: Science Press, 2022
    [22] J. Shen, T. Tang, Spectral and high-order methods with applications, Beijing: Science Press, 2006.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1737) PDF downloads(129) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog