In this paper, we introduce and study a new subclass of normalized functions that are analytic and univalent in the open unit disk U={z:z∈Cand|z|<1}, which satisfies the following geometric criterion:
ℜ(Lwu,vf(z)z(1−e−2iϕμ2z2)eiϕ)>0,
where z∈U, 0≦μ≦1 and ϕ∈(−π2,π2), and which is associated with the Hohlov operator Lwu,v. For functions in this class, the coefficient bounds, as well as upper estimates for the Fekete-Szegö functional and the Hankel determinant, are investigated.
Citation: Hari Mohan Srivastava, Timilehin Gideon Shaba, Gangadharan Murugusundaramoorthy, Abbas Kareem Wanas, Georgia Irina Oros. The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator[J]. AIMS Mathematics, 2023, 8(1): 340-360. doi: 10.3934/math.2023016
[1] | Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with $ \mathfrak{q} $-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333 |
[2] | Erhan Deniz, Muhammet Kamali, Semra Korkmaz . A certain subclass of bi-univalent functions associated with Bell numbers and $q-$Srivastava Attiya operator. AIMS Mathematics, 2020, 5(6): 7259-7271. doi: 10.3934/math.2020464 |
[3] | Wenzheng Hu, Jian Deng . Hankel determinants, Fekete-Szegö inequality, and estimates of initial coefficients for certain subclasses of analytic functions. AIMS Mathematics, 2024, 9(3): 6445-6467. doi: 10.3934/math.2024314 |
[4] | Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618 |
[5] | Mohammad Faisal Khan, Jongsuk Ro, Muhammad Ghaffar Khan . Sharp estimate for starlikeness related to a tangent domain. AIMS Mathematics, 2024, 9(8): 20721-20741. doi: 10.3934/math.20241007 |
[6] | Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus . Applications of $ q- $Ultraspherical polynomials to bi-univalent functions defined by $ q- $Saigo's fractional integral operators. AIMS Mathematics, 2024, 9(7): 17063-17075. doi: 10.3934/math.2024828 |
[7] | Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906 |
[8] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[9] | Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for $ q $-starlike functions associated with differential subordination and $ q $-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379 |
[10] | Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent $ q $-starlike functions of order $ \alpha $. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320 |
In this paper, we introduce and study a new subclass of normalized functions that are analytic and univalent in the open unit disk U={z:z∈Cand|z|<1}, which satisfies the following geometric criterion:
ℜ(Lwu,vf(z)z(1−e−2iϕμ2z2)eiϕ)>0,
where z∈U, 0≦μ≦1 and ϕ∈(−π2,π2), and which is associated with the Hohlov operator Lwu,v. For functions in this class, the coefficient bounds, as well as upper estimates for the Fekete-Szegö functional and the Hankel determinant, are investigated.
Geometric function theory is one of the most exciting areas of research in complex analysis, with applications in a wide range of mathematical fields including mathematical physics. Due to its many uses in analytical solutions to issues such as those in electrostatics, aerodynamics and fluid mechanics, researchers in the field of complex analysis have been investigating various families of analytic (or holomorphic) functions.
Analytic functions such as ψ(z) can be expressed in the Taylor-Maclaurin series expansion about the origin z=0 as follows:
ψ(z)=C0+C1z+C2z2+C3z3+C4z4+⋯(z∈U), |
which can be normalized in the following way:
f(z)=ψ(z)−C0C1=z+∞∑j=2bjzj, | (1.1) |
where
C1≠0,bj=CjC1,U={z:z∈Cand|z|<1}, |
and the series expansion in (1.1) is convergent in the open unit disk U. Let A denote a class of functions f(z) that are analytic (or holomorphic) in U, have the form (1.1) and are normalized by the constraints f′(0)−1=f(0)=0.
The class of functions φ that are holomorphic in U and have the form
φ(z)=1+r1z+r2z2+⋯(z∈U), |
with
φ(0)=1andℜ(φ(z))>0(z∈U), |
is denoted by P.
In the geometric function theory of complex analysis, studies of the concept of convolution are crucial. Various new and interesting subclasses of holomorphic and univalent functions have been introduced and investigated through the use of the Hadamard product (or convolution) in the direction of well-known ideas such as the integral mean, Hankel determinant, subordination, partial sums, superordination inequalities and so on. The Hadamard product (or convolution) of f and g, represented by f∗g, is defined by
(f∗g)(z):=z+∞∑j=2bjajzj=:(g∗f)(z) |
for functions f and g in A given by the following series:
f(z)=z+∞∑j=2bjzjg(z)=z+∞∑j=2ajzj(z∈U). |
The Gauss hypergeometric function 2F1(u,v,w;z) is defined as follows:
2F1(u,v,w;z)=∞∑j=0(u)j(v)j(w)jzj(1)j(z∈U), |
where (δ)j signifies the Pochhammer symbol (or the shifted factorial) defined in terms of the Gamma function Γ, as follows:
(δ)j=Γ(δ+j)Γ(δ)={1(j=0)δ(δ+1)(δ+2)(δ+3)⋯(δ+j−1)(j≠0). |
Hohlov (see [19,20]) proposed and investigated a linear operator denoted by Lwu,v and defined by Lwu,vf:A⟶A, with
Lwu,vf(z):=z2F1(u,v,w;z)∗f(z)=z+∞∑j=2(u)j−1(v)j−1(w)j−1(1)j−1bjzj(z∈U). | (1.2) |
The above-specified three-parameter family of operators unifies several other linear operators that have been introduced and explored previously when the parameters are appropriately chosen. The works in [7,9,11,12,40,41,42,43,51,53,59,72] provide special examples of this operator. For more details, see [17,47,70,71]. It should be remarked in passing that much more general convolution operators, such as the Dziok-Srivastava operator (see [14,15]) and the Srivastava-Wright operator (see [62]), have also been investigated rather extensively in the vast literature in geometric function theory of complex analysis.
The nth coefficient of a function belonging to the class S is well-known to be bounded by n, and the coefficient bounds provide information about the geometric properties of the function. For example, the nth coefficient of functions in the family S yields the growth and distortion properties of the function, whereas the second coefficient of functions in the family S yields the growth and distortion properties of the function itself. Studying a functional composed of combinations of the coefficients of the original function is a common issue in the geometric function theory of complex analysis. In most cases, the extremal value of the functional is required across a parameter. Some of our findings are related to the Fekete-Szegö functional, which is a key functional of this kind.
The famous problem solved by Fekete and Szegö [16] is to determine the greatest value of the coefficient functional Ωσ(f):=|a3−σa22| over the class S for each σ∈[0,1], which was demonstrated by using the Loewner chain technique. For various subclasses of the class of S and associated subclasses of functions in A, several scholars solved the Fekete-Szegö issue. For example, see [8,13,23,25,28,29,30,40,44], and so on. We refer to [68] for a thorough study on the Fekete-Szegöproblem of the traditional univalent function class S. Srivastava et al. claimed that the inequality was sharp in [68]. However, Peng (see [54]) has demonstrated that the extremal function presented there for the situation of ϱ∈(2/3,1) is not sharp. Cho et al. [10] discovered the Fekete-Szegö inequalities for close-to-convex functions with regard to a certain convex function, which improves the bound explored in [68]. Using the Hankel or Toeplitz determinants is another approach to look at the sharp bound for the nonlinear functional. We recall that Noonan and Thomas [49] introduced and investigated the qth Hankel determinant of f for q≧1 and n≧1 as follows:
Hq(j)=|bjbj+1bj+2……bj+q−1bj+1bj+2bj+3……bj+qbj+2bj+3bj+4……bj+q+1⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮bj+q−1bj+qbj+q+1……bj+2(q−1)|(q,j∈N). | (1.3) |
Several writers, notably Noor [50], have investigated the determinant Hq(j), with topics ranging from the rate of development of Hq(j) (as j⟶∞) to the determinant of exact limits for particular subclasses of analytic functions in the unit disk U with specified values of j and q. When q=2, j=1, and b1=1, the Hankel determinant is H2(1)=|b3−b22|. The Hankel determinant simplifies to H2(2)=|b2b4−b23| when j=q=2. Fekete and Szegö [12] consider the Hankel determinant H2(1) and refer to H2(2) as the second Hankel determinant. If f is univalent in U, then the sharp upper inequality H2(1)=|b3−b22|≦1 is known (see[16]). Janteng et al. [21] obtained sharp bounds for the functional H2(2) for the function f in the subclass RT of S, which was introduced by MacGregor [37] and which consists of functions whose derivative has a positive real part. They demonstrated that H2(2)=|b2b4−b23|≦4/9 for each f∈RT. They also discovered the sharp second Hankel determinant for the classical subclasses of S, namely, the classes S∗ and K of starlike and convex functions, respectively (see [22]). These two classes have bounds of |b2b4−b23|≦1/8 and |b2b4−b23|≦1. The Hankel determinants for starlike and convex functions with respect to symmetric points were recently discovered by Reddy and Krishna [57]. For functions belonging to subclasses of the Ma-Minda type starlike and convex functions, Lee et al. [34] found bounds for the second Hankel determinant.
Mishra and Gochhayat [41] found the sharp bound to the nonlinear functional |b2b4−b23| for the subclass of analytic functions given by
Rρ(ω,t)(0≦t<1;0≦ρ<1;|ω|<π2), |
and defined as follows:
ℜ(eiωΩρzf(z)z)>tcosω, |
using the Owa-Srivastava operator in [53]. Similar coefficient constraints are found for a variety of analytic function subclasses that are constructed by using other appropriate linear operators (see, for example, [1,32,45,46,74,75]).
In the case when q=3 and j=1, the Hankel determinant, represented by H3(1), is given by
H3(1)=b3(b2b4−b23)−b4(b4−b2b3)+b5(b3−b22). |
Clearly, we have
|H3(1)|≦|b3||b2b4−b23|+|b4||b4−b2b3|+|b5||b3−b22|. | (1.4) |
Babalola (see [5]) recently obtained the sharp upper bound of H3(1) for functions in the classes S∗, K and RT classes.
Krishna et al. [31] defined RT(α) as ℜ(h′(z))>α and found the bound on H3(1). Ayinla and Opoola [4] introduced the class defined by using the Sălăgean derivative operator as follows:
ℜ(eiγ(1−e−2iγβ2z2)Dn+1f(z)z)>0 |
and obtained inequalities for the Fekete-Szegö functional and the second Hankel determinant. Additionally, Bansal et al. [6] and Raza and Malik [56] found the bound for H3(1) for a subclass of univalent functions. Gochhayat et al. [17] recently introduced the class Rca,b and obtained the sharp bounds of H2(2) and H3(1) in terms of the Gauss hypergeometric function by utilizing the Hohlov operator. See also [2,3,26,27,33,48,55,61,65,69,73,76] for some of the recent works on the third Hankel determinant and [66] for some developments on the fourth Hankel determinant.
Here, in this paper, we introduce a subclass of the normalized univalent function class S by using the Hohlov operator, as inspired by some of the above-mentioned researches.
Definition 1.1. A function f(z) of the form (1.1) that is holomorphic and univalent in U is said to belong to the class Jϕμ(u,v,w) if it satisfies the following geometric criterion:
ℜ(Lwu,vf(z)z(1−e−2iϕμ2z2)eiϕ)>0, | (1.5) |
where z∈U, 0≦μ≦1 and ϕ∈(−π2,π2).
Remark 1.1. Choosing u=2, v=w=1 and μ=0 gives we get the class
Jϕ0(2,1,1):=Jϕ. |
This class Jϕ was introduced and studied by Noshiro [52].
Remark 1.2. Choosing u=2, v=w=1 and μ=ϕ=0 gives we get the class
J00(2,1,1)=:J. |
This class J was introduced and studied by MacGregor [37].
Remark 1.3. Choosing u=2, v=w=1, ϕ=0 and μ=1 gives we get the class
J01(2,1,1)=:J1. |
This class J1 was introduced and studied by Hengartner and Schober [18].
Remark 1.4. Choosing u=2, v=w=1 and μ=1 gives we get the class
Jϕ1(2,1,1)=:Jϕ1. |
This class Jϕ1 was introduced and studied by Royster and Ziegl [58].
Remark 1.5. Choosing u=2, v=w=1 and ϕ=0 gives we get the class
J0μ(2,1,1)=:Jμ. |
This class Jμ was introduced and studied by Kanas and Lecko [24].
Remark 1.6. Choosing u=2 and v=w=1 gives we get the class
Jϕμ(2,1,1)=:Jϕμ. |
This class Jϕμ was introduced and studied by Lecko [35].
In this article, we establish the coefficient estimates, Fekete-Szegö type inequality, and the bounds for the second and the third Hankel determinants for functions belonging to the class Jϕμ(u,v,w).
Lemma 1.1. (see [12]) Let φ(z)∈P. Then
|rj|≦2(j∈N). |
Lemma 1.2. (see [38]) Let φ(z)∈P. Then
|r2−υr212|≦{2(1−υ),(υ≦0)2(0≦υ≦2)2(υ−1)(υ≧2) |
for υ∈R.
Lemma 1.3. (see [36]) Let φ(z)∈P. Then
2r2=r21+x(4−r21),4r3=r31+2r1(4−r21)x−r1(4−r21)x2+2(4−r21)(1−|x|2)z, |
for some complex numbers x and z such that |x|≦1 and |z|≦1.
Theorem 1.1. Let f(z)∈Jϕμ(u,v,w). Then
|b2|≦2(w)1r1cosϕ(u)1(v)1, | (1.6) |
|b3|≦2(w)2(u)2(v)2(2cosϕ+μ2), | (1.7) |
|b4|≦12cosϕ(w)3(u)3(v)3(1+μ2), | (1.8) |
|b5|≦24(w)4(u)4(v)4(2cosϕ+2μ2cosϕ+μ4) | (1.9) |
and
|b6|≦240cosϕ(w)5(u)5(v)5(1+μ2+μ4), | (1.10) |
where μ∈[0,1] and ϕ∈(−π2,π2).
Proof. Consider the function ϑ(z) given by
ϑ(z)=cosϕ+isinϕ+∞∑j=1κjzj⟹φ(z)=ϑ(z)−isinϕcosϕ. | (1.11) |
Then, by (1.5), we can have
Lwu,vf(z)z(1−e−2iϕμ2z2)eiϕ=ϑ(z). | (1.12) |
Also, from (1.11) and (1.12), we get
Lwu,vf(z)z(1−e−2iϕμ2z2)eiϕ=φ(z)cosϕ+isinϕ. | (1.13) |
As a result, the right-hand side of (1.13) is given by
cosϕ+r1zcosϕ+r2z2cosϕ+⋯=cosϕ+κ1z+κ2z2+⋯, |
which implies that
κj=rjcosϕ(j∈N). | (1.14) |
Furthermore, from the left-hand side of (1.13), we have
Lwu,vf(z)z(1−e−2iϕμ2z2)eiϕ=eiϕ[(1−e−2iϕμ2z2)(1+∞∑j=2(u)j−1(v)j−1(w)j−1(1)j−1bjzj−1)]=eiϕ+(u)(v)(w)eiϕb2z+((u)2(v)22(w)2eiϕb3−e−iϕμ2)z2+((u)3(v)36(w)3eiϕb4−e−iϕ(u)1(v)1(w)1μ2b2)z3+((u)4(v)424(w)4eiϕb5−e−iϕ(u)2(v)22(w)2μ2b3)z4+((u)5(v)5120(w)5eiϕb6−e−iϕ(u)3(v)36(w)3μ2b4)z5+⋯. | (1.15) |
Now, upon comparing the coefficients of z,z2,z3,z4 and z5 in (1.14) and (1.15), we get
b2=(w)1r1cosϕe−iϕ(u)1(v)1, | (1.16) |
b3=2(w)2(r2cosϕe−iϕ+e−2iϕμ2)(u)2(v)2. | (1.17) |
b4=6(w)3(r3cosϕe−iϕ+e−3iϕr1cosϕμ2)(u)3(v)3, | (1.18) |
b5=24(w)4(r4cosϕe−iϕ+r2μ2e−3iϕcosϕ+e−4iϕμ4)(u)4(v)4 | (1.19) |
and
b6=120(w)5(r5cosϕe−iϕ+r3μ2e−3iϕcosϕ+e−5iϕr1cosϕμ4)(u)5(v)5. | (1.20) |
The desired estimate is obtained by first applying the triangle inequality to (1.16) to (1.20) and then using Lemma 1.1. The proof of Theorem 1.1 is thus completed.
Theorem 1.2. Let f(z)∈Jϕμ(u,v,w), 0≦μ≦1 and −π2<ϕ<π2. Then
|b3−σb22|≦{2(w)2(u)2(v)2(μ2+2cosϕ)−e−iϕσ(2(w)1cosϕ(u)1(v)1)2,(σ≦0),2(w)2(u)2(v)2(μ2+2cosϕ),(0≦σ≦A1),2(w)2(u)2(v)2(μ2−2cosϕ)+e−iϕσ(2(w)1cosϕ(u)1(v)1)2,(σ≧A1), |
where
A1=2(w)2eiϕ(u)2(v)2cosϕ((u)1(v)1(w)1)2 |
for any real number σ.
Proof. By applying (1.16) and (1.17), we have
|b3−σb22|=|2r2cosϕe−iϕ(w)2(u)2(v)2+2μ2e−2iϕ(w)2(u)2(v)2−σr21cos2ϕe−2iϕ(w)21(u)21(v)21|≦2μ2(w)2(u)2(v)2+2(w)2cosϕ(u)2(v)2|r2−r21σ(w)21(u)2(v)2cosϕe−iϕ2(u)21(v)21(w)2|≦2μ2(w)2(u)2(v)2+2(w)2cosϕ(u)2(v)2|r2−υr212|, |
where
υ=σ(w)21(u)2(v)2cosϕe−iϕ(u)21(v)21(w)2. | (1.21) |
By Lemma 1.2 and for υ≦0, we get
|b3−σb22|≦2(w)2(u)2(v)2(μ2+2cosϕ)−e−iϕσ(2(w)1cosϕ(u)1(v)1)2 | (1.22) |
and, for υ≦0 in (1.21), we have
σ(w)21(u)2(v)2cosϕe−iϕ(u)21(v)21(w)2≦0. | (1.23) |
Also, by applying Lemma 1.2, and for 0≦υ≦2, we obtain
|b3−σb22|≦2(w)2(u)2(v)2(μ2+2cosϕ) | (1.24) |
and for 0≦υ≦2 in (1.21), we get
0≦σ≦2(w)2eiϕ(u)2(v)2cosϕ((u)1(v)1(w)1)2. | (1.25) |
Next, for υ≧2 in Lemma 1.2, we have
|b3−σb22|≦2μ2(w)2(u)2(v)2+2(w)2cosϕ(u)2(v)2[2(σ(w)21(u)2(v)2cosϕe−iϕ(u)21(v)21(w)2−1)], | (1.26) |
which gives
|b3−σb22|≦2(w)2(u)2(v)2(μ2−2cosϕ)+e−iϕσ(2(w)1cosϕ(u)1(v)1)2 | (1.27) |
and, for υ≧2 in (1.21), we get
σ≧2(w)2eiϕ(u)2(v)2cosϕ((u)1(v)1(w)1)2. |
This completes the proof of Theorem 1.2.
Theorem 1.3. Let f(z)∈Jϕμ(u,v,w), 0≦μ≦1 and −π2<ϕ<π2. Then
H2(1)=|b3−b22|≦2(w)2(u)2(v)2(μ2+2cosϕ). | (1.28) |
Proof. By applying (1.16) and (1.17), we have
|b3−b22|=|2r2cosϕe−iϕ(w)2(u)2(v)2+2μ2e−2iϕ(w)2(u)2(v)2−r21cos2ϕe−2iϕ(w)21(u)21(v)21|≦2μ2(w)2(u)2(v)2+2(w)2cosϕ(u)2(v)2|r1−(w)21(u)2(v)2cosϕe−iϕ(u)21(v)21(w)2r212|. |
Thus, by applying Lemma 1.2, we find that
|b3−b22|≦2(w)2(u)2(v)2(μ2+2cosϕ). |
Theorem 1.4. Let f(z)∈Jϕμ(u,v,w), 0≦μ≦1 and −π2<ϕ<π2. Then
H2(2)=|b2b4−b23|≦(2(w)2(u)2(v)2)2(μ4+4μ2cosϕ+4cos2ϕ)+3cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3(μ4+6μ2+9). | (1.29) |
Proof. From the equations (1.16) to (1.18), we have
|b2b4−b23|≦|6r1r2(w)1(w)3cos2ϕe−2iϕ(u)1(v)1(u)3(v)3+6r21(w)1(w)3cos2ϕe−4iϕμ2(u)1(v)1(u)3(v)3−4r22e−2iϕcos2ϕ(w)22(u)22(v)22−8r2μ2e−3iϕcosϕ(w)22(u)22(v)22−4μ4e−4iϕ(w)22(u)22(v)22|. |
Applying Lemma 1.3, and after some simplification, we find that
X|b2b4−b23|=|3r41e−2iϕcos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3+3r21(4−r21)e−2iϕxcos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3−3r21(4−r21)e−2iϕx2cos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3+3r1(4−r21)(1−|x|2)e−2iϕcos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+6r21μ2e−4iϕcos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3−r41e−2iϕcos2ϕ(w)22(u)22(v)22−2r21xe−2iϕcos2ϕ(4−r21)(w)22(u)22(v)22−x2e−2iϕcos2ϕ(4−r21)2(w)22(u)22(v)22−4r21μ2e−3iϕcosϕ(w)22(u)22(v)22−4μ2x(4−r21)e−3iϕcosϕ(w)22(u)22(v)22−4μ4e−4iϕ(w)22(u)22(v)22|. |
Let r1=r and recall that |r1|≦2. We may assume without restriction that r∈[0,2]. Then, by using the triangle inequality, we get
|b2b4−b23|≦3r4cos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3+3r2(4−r21)|x|cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+3r2(4−r2)|x|2cos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3+3r(4−r2)(1−|x|2)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+6r2μ2cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+r4cos2ϕ(w)22(u)22(v)22+2r2|x|cos2ϕ(4−r2)(w)22(u)22(v)22+|x|2cos2ϕ(4−r2)2(w)22(u)22(v)22+4r2μ2cosϕ(w)22(u)22(v)22+4μ2|x|(4−r2)cosϕ(w)22(u)22(v)22+4μ4(w)22(u)22(v)22. |
Now, putting λ=|x|≦1, we have
|b2b4−b23|≦3r4cos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3+3r2(4−r21)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3λ+3r2(4−r2)cos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3λ2+3r(4−r2)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3−3r(4−r2)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3λ2+6r2μ2cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+r4cos2ϕ(w)22(u)22(v)22+2r2cos2ϕ(4−r2)(w)22(u)22(v)22λ+(4−r2)2cos2ϕ(w)22(u)22(v)22λ2+4r2μ2cosϕ(w)22(u)22(v)22+4μ2(4−r2)cosϕ(w)22(u)22(v)22λ+4μ4(w)22(1)22(u)22(v)22, |
which implies that
|b2b4−b23|≦{3r4cos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3+3r(4−r2)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+6r2μ2cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+r4cos2ϕ(w)22(u)22(v)22+4r2μ2cosϕ(w)22(u)22(v)22+4μ4(w)22(u)22(v)22}+{3r2(4−r21)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+2r2(4−r2)cos2ϕ(w)22(u)22(v)22+4μ2(4−r2)cosϕ(w)22(u)22(v)22}λ+{3r2(4−r2)cos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3−3r(4−r2)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+(4−r2)2cos2ϕ(w)22(u)22(v)22}λ2=G1(r,λ). |
Now, maximizing the function G1(r,λ) in the closed interval 0≦λ≦1, we obtain
∂G1(λ,r)∂λ={3r2(4−r21)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+2r2(4−r2)cos2ϕ(w)22(u)22(v)22+4μ2(4−r2)cosϕ(w)22(u)22(v)22}+2{3r2(4−r2)cos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3−3r(4−r2)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+(4−r2)2cos2ϕ(w)22(u)22(v)22}λ>0 |
for 0≦r≦1. Thus, clearly, G1(λ,r) is an increasing function. Hence, it has the maximum point at λ=1 and we have
max0≦λ≦1G1(λ,r)=G1(1,r)≦3r4cos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3+3r(4−r2)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+6r2μ2cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+r4cos2ϕ(w)22(u)22(v)22+4r2μ2cosϕ(w)22(u)22(v)22+4μ4(w)22(u)22(v)22+3r2(4−r21)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+2r2(4−r2)cos2ϕ(w)22(u)22(v)22+4μ2(4−r2)cosϕ(w)22(u)22(v)22+3r2(4−r2)cos2ϕ(w)1(w)32(u)1(v)1(u)3(v)3+3r(4−r2)cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3+(4−r2)2cos2ϕ(w)22(u)22(v)22=G(r). | (1.30) |
After simplifying and differentiating with respect to r, we have
G′(r)=[μ2+3]12cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3r−12cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3r3. |
By equating G′(r) to zero and doing some simple calculations, we have the critical points at
r0=0,r1=√μ2+3andr2=−√μ2+3. |
The maximum point occurs at r1=√μ2+3, so by using (1.30), we get
G(r)=4(w)22(u)22(v)22{μ4+4μ2cosϕ+4cos2ϕ}+6cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3{μ4+6μ2+9}−3cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3{μ4+6μ2+9}. |
Hence, we have
|b2b4−b23|≦(2(w)2(u)2(v)2)2{μ4+4μ2cosϕ+4cos2ϕ}+3cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3{μ4+6μ2+9}. |
Theorem 1.5. Let f(z)∈Jϕμ(u,v,w), 0≦μ≦1 and −π2<ϕ<π2. Then
|b2b3−b4|≦−3cosϕ(w)3(u)3(v)3×[(2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2)32]+√2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2×(2cosϕ(w)1(w)2(u)1(v)1(u)2(v)2(μ2+2cosϕ))+(6cosϕ(w)3(u)3(v)3(μ3+3))×√2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2. | (1.31) |
Proof. Applying the equations (1.16) to (1.18), we have
|b2b3−b4|≦|2r1r2e−2iϕcos2ϕ(w)1(w)2(u)1(v)1(u)2(v)2+2r1μ2e−3iϕcosϕ(w)1(w)2(u)1(v)1(u)2(v)2−6r3e−iϕcosϕ(r)3(u)3(v)3−6μ2r1e−3iϕcosϕ(r)3(u)3(v)3|. |
Applying Lemma 1.3, we obtain
|b2b3−b4|=|r31e−2iϕcos2ϕ(w)1(w)2(u)1(v)1(u)2(v)2+r1(4−r21)e−2iϕxcos2ϕ(w)1(w)2(u)1(v)1(u)2(v)2+2r1μ2e−3iϕcosϕ(w)1(w)2(u)1(v)1(u)2(v)2−3r31e−iϕcosϕ(w)32(u)3(v)3−3r1(4−r21)e−iϕxcosϕ(w)3(u)3(v)3+3r1(4−r21)e−iϕx2cosϕ(w)32(u)3(v)3−3(4−r21)(1−|x|2)e−iϕcosϕz(w)3(u)3(v)3−6r1μ2e−3iϕcosϕ(w)3(u)3(v)3|. |
Let r1=r, assuming that |r|=|r1|≦2, so that without restriction, r∈[0,2], and by applying triangle inequality with |x|=λ≦1 and |z|≦1, we find that
|b2b3−b4|≦{r3cos2ϕ(w)1(w)2(u)1(v)1(u)2(v)2+2rμ2cosϕ(w)1(w)2(u)1(v)1(u)2(v)2+3r3cosϕ(w)32(u)3(v)3+3(4−r2)cosϕ(w)3(u)3(v)3+6rμ2cosϕ(w)3(u)3(v)3}+{r(4−r2)cos2ϕ(w)1(w)2(u)1(v)1(u)2(v)2+3r(4−r2)cosϕ(w)3(u)3(v)3}λ+{3r(4−r2)cosϕ(w)32(u)3(v)3−3(4−r2)cosϕ(w)3(u)3(v)3}λ2=G2(λ,r). | (1.32) |
By differentiating with respect to λ, we have
∂G2(λ,r)∂λ={r(4−r2)cos2ϕ(w)1(w)2(u)1(v)1(u)2(v)2+3r(4−r2)cosϕ(w)3(u)3(v)3}+{3r(4−r2)cosϕ(w)3(u)3(v)3−6(4−r2)cosϕ(w)3(u)3(v)3}λ>0 |
for 0≦λ≦1. Since G′2(λ,r)>0 for 0≦λ≦1, it means that G2(λ,r) is an increasing function with its maximum point at λ=1. Hence, from (1.32), we have
max0≦λ≦1G2(λ,r)=G2(1,r)≦{r3cos2ϕ(w)1(w)2(u)1(v)1(u)2(v)2+2rμ2cosϕ(w)1(w)2(u)1(v)1(u)2(v)2}+{3r3cosϕ(w)32(u)3(v)3+3(4−r2)cosϕ(w)3(u)3(v)3+6rμ2cosϕ(w)3(u)3(v)3}+{r(4−r2)cos2ϕ(w)1(w)2(u)1(v)1(u)2(v)2+3r(4−r2)cosϕ(w)3(u)3(v)3}+{3r(4−r2)cosϕ(w)32(u)3(v)3−3(4−r2)cosϕ(w)3(u)3(v)3}=G(r). | (1.33) |
After some simple calculations and simplification, we get
G(r)=2rμ2cosϕ(w)1(w)2(u)1(v)1(u)2(v)2+6rμ2cosϕ(w)3(u)3(v)3+4rcos2ϕ(w)1(w)2(u)1(v)1(u)2(v)2+12rcosϕ(w)3(u)3(v)3−3r3cosϕ(w)3(u)3(v)3+12cosϕ(w)3(u)3(v)3. | (1.34) |
By differentiating G(r) with with respect to r and equating it to zero, the critical point will be seen to occur at
2μ2cosϕ(w)1(w)2(u)1(v)1(u)2(v)2+4cos2ϕ(w)1(w)2(u)1(v)1(u)2(v)2+18cosϕ(w)3(u)3(v)3+6μ2cosϕ(w)3(u)3(v)3=9cosϕ(w)3(u)3(v)3r2. |
Hence, we have
r=√2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2, |
r=−√2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2. |
Also, we have
G′(r)=−18cosϕ(w)2(u)3(v)3r=−18cosϕ(w)2(u)3(v)3×√2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2. |
From (1.34), we get
G(r)=−3cosϕ(w)3(u)3(v)3×[(2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2)32]+√2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2×(2cosϕ(w)1(w)2(u)1(v)1(u)2(v)2(μ2+2cosϕ))+(6cosϕ(w)3(u)3(v)3(μ3+3))×√2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2. |
Hence, we have
|b2b3−b4|≦−3cosϕ(w)3(u)3(v)3×[(2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2)32]+√2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2×(2cosϕ(w)1(w)2(u)1(v)1(u)2(v)2(μ2+2cosϕ))+(6cosϕ(w)3(u)3(v)3(μ3+3))×√2(w)1(w)2(u)3(v)3(μ2+2cosϕ)+6(w)3(u)1(v)1(u)2(v)2(3+μ2)9(w)3(u)1(v)1(u)2(v)2. |
Theorem 1.6. Let f(z)∈Jϕμ(u,v,w), 0≦μ≦1 and −π2<ϕ<π2. Then
H3(1)≦[2(w)2(u)2(v)2(2cosϕ+μ2)][(2(w)2(u)2(v)2)2{μ4+4μ2cosϕ+4cos2ϕ}+3cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3{μ4+6μ2+9}]+[12cosϕ(w)3(u)3(v)3(1+μ2)][−3cosϕ(w)3(u)3(v)3⋅(2A(μ2+2cosϕ)+2B(3+μ2)3B)32]+[12cosϕ(w)3(u)3(v)3(1+μ2)][√2A(μ2+2cosϕ)+2B(3+μ2)3B2cosϕ(w)1(w)2(u)1(v)1(u)2(v)2(μ2+2cosϕ)]+[12cosϕ(w)3(u)3(v)3(1+μ2)][√2A(μ2+2cosϕ)+2B(3+μ2)3B⋅6cosϕ(w)3(u)3(v)3(μ3+3)]+24(w)4(u)4(v)4(2cosϕ+2μ2cosϕ+μ4)[2(w)2(u)2(v)2(μ2+2cosϕ)], | (1.35) |
where
A=2(w)1(w)2(u)3(v)3andB=6(w)3(u)1(v)1(u)2(v)2. |
Proof. Taking it from (1.4), we have
H3(1)=|b1b2b3b2b3b4b3b4b5|(b1=1) | (1.36) |
=b3(b2b4−b23)−b4(b4−b2b3)+b5(b3−b22). | (1.37) |
Applying Theorems 1.1 as well as 1.3 to 1.5, and by using the triangle inequality, we have
H3(1)≦[2(w)2(u)2(v)2(2cosϕ+μ2)][(2(w)2(u)2(v)2)2{μ4+4μ2cosϕ+4cos2ϕ}+3cos2ϕ(w)1(w)3(u)1(v)1(u)3(v)3{μ4+6μ2+9}]+[12cosϕ(w)3(u)3(v)3(1+μ2)][−3cosϕ(w)3(u)3(v)3(2A(μ2+2cosϕ)+2B(3+μ2)3B)32]+[12cosϕ(w)3(u)3(v)3(1+μ2)][√2A(μ2+2cosϕ)+2B(3+μ2)3B2cosϕ(w)1(w)2(u)1(v)1(u)2(v)2(μ2+2cosϕ)]+[12cosϕ(w)3(u)3(v)3(1+μ2)][√2A(μ2+2cosϕ)+2B(3+μ2)3B⋅6cosϕ(w)3(u)3(v)3(μ3+3)]+24(w)4(u)4(v)4(2cosϕ+2μ2cosϕ+μ4)[2(w)2(u)2(v)2(μ2+2cosϕ)]. |
Our present investigation was motivated by a number of recent developments on the Fekete-Szegö functional, the Hankel determinants of the third and the fourth kinds, and the associated Taylor-Maclaurin coefficient estimates and coefficient inequalities. Here, in this paper, we have introduced and systematically studied a new subclass of normalized analytic and univalent functions in the open unit disk U, which satisfies the following geometric criterion:
ℜ(Lwu,vf(z)z(1−e−2iϕμ2z2)eiϕ)>0, |
where z∈U, 0≦μ≦1 and ϕ∈(−π2,π2), and which is associated with the Hohlov operator Lwu,v. For functions in this class, we have investigated several coefficient bounds, as well as upper estimates for the Fekete-Szegö functional and the Hankel determinant.
It should be remarked that, in many recent investigations dealing with some of the topics of our presentation in this paper, the basic or quantum (or q-) calculus was extensively used (see [39,60,67]).
We conclude this paper by recalling a recently-published survey-cum-expository review article in which Srivastava [63] explored the mathematical applications of the q-calculus, the fractional q-calculus and the fractional q-derivative operators in geometric function theory of complex analysis, especially in the study of Fekete-Szegö functional. Srivastava [63] also exposed the not-yet-widely-understood fact that the so-called (p,q)-variation of the classical q-calculus is, in fact, a rather trivial and inconsequential variation of the classical q-calculus, the additional parameter p being redundant or superfluous (see, for details, [63,p. 340]; see also [64,pp. 1511-1512]).
The authors declare that they have no conflicts of interest.
[1] | A. Abubaker, M. Darus, Hankel determinant for a class of analytic functions involving a generalized linear differential operator, Internat. J. Pure Appl. Math., 69 (2011), 429–435. |
[2] |
M. K. Aouf, R. M. El-Ashwah, H. M. Zayed, Fekete-Szegö inequalities for certain class of meromorphic functions, J. Egyptian Math. Soc., 21 (2013), 197–200. http://dx.doi.org/10.1016/j.joems.2013.03.013 doi: 10.1016/j.joems.2013.03.013
![]() |
[3] |
M. K. Aouf, R. M. El-Ashwah, H. M. Zayed, Fekete-Szegö inequalities for p-valent starlike and convex functions of complex order, J. Egyptian Math. Soc., 22 (2014), 190–196. http://dx.doi.org/10.1016/j.joems.2013.06.012 doi: 10.1016/j.joems.2013.06.012
![]() |
[4] |
R. O. Ayinla, T. O. Opoola, The Fekete Szegö functional and second Hankel determinant for a certain subclass of analytic functions, Appl. Math., 10 (2019), 1071–1078. http://dx.doi.org/10.4236/am.2019.1012074 doi: 10.4236/am.2019.1012074
![]() |
[5] | K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, 6 (2010), 1–7. |
[6] |
D. Bansal, S. Maharana, J. K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc., 52 (2015), 1139–1148. http://dx.doi.org/10.4134/JKMS.2015.52.6.1139 doi: 10.4134/JKMS.2015.52.6.1139
![]() |
[7] |
S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429–446. http://dx.doi.org/10.1090/S0002-9947-1969-0232920-2 doi: 10.1090/S0002-9947-1969-0232920-2
![]() |
[8] |
B. Bhowmik, S. Ponnusamy, K.-J. Wirths, On the Fekete-Szegö problem for concave univalent functions, J. Math. Anal. Appl., 373 (2011), 432–438. http://dx.doi.org/10.1016/j.jmaa.2010.07.054 doi: 10.1016/j.jmaa.2010.07.054
![]() |
[9] |
B. C. Carlson, D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737–745. http://dx.doi.org/10.1137/0515057 doi: 10.1137/0515057
![]() |
[10] |
N. E. Cho, B. Kowalczyk, A. Lecko, Fekete-Szegö problem for close-to-convex functions with respect to a certain convex function depend on a real parameter, Front. Math. China, 11 (2016), 1471–1500. http://dx.doi.org/10.1007/s11464-015-0510-y doi: 10.1007/s11464-015-0510-y
![]() |
[11] |
J. H. Choi, M. Saigo, H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432–445. http://dx.doi.org/10.1016/S0022-247X(02)00500-0 doi: 10.1016/S0022-247X(02)00500-0
![]() |
[12] | P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983. |
[13] |
J. Dziok, A general solution of the Fekete-Szegö problem, Boundary Value Prob., 2013 (2013), 98. http://dx.doi.org/10.1186/1687-2770-2013-98 doi: 10.1186/1687-2770-2013-98
![]() |
[14] |
J. Dziok, H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (2003), 7–18. http://dx.doi.org/10.1080/10652460304543 doi: 10.1080/10652460304543
![]() |
[15] |
J. Dziok, H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1–13. http://dx.doi.org/10.1016/S0096-3003(98)10042-5 doi: 10.1016/S0096-3003(98)10042-5
![]() |
[16] |
M. Fekete, G. Szegö, Eine Bemerkung Über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85–89. http://dx.doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85
![]() |
[17] |
P. Gochhayat, A. Prajapat, A. K. Sahoo, Coefficient estimates of certain subclasses of analytic functions associated with Hohlov operator, Asian-Eur. J. Math., 14 (2021), 2150021. http://dx.doi.org/10.1142/S1793557121500212 doi: 10.1142/S1793557121500212
![]() |
[18] |
W. Hengartner, G. Schober, On schlicht mappings to domain convex in one direction, Comment. Math. Helv., 45 (1970), 303–314. http://dx.doi.org/10.1007/BF02567334 doi: 10.1007/BF02567334
![]() |
[19] | Yu. E. Hohlov, Hadamard convolution, hypergeometric functions and linear operators in the class of univalent functions, Dokl. Akad. Nauk Ukr. SSR Ser. A, 7 (1984), 25–27. |
[20] |
Yu. E. Hohlov, Convolution operators preserving univalent functions, Ukr. Math. J., 37 (1985), 220–226. http://dx.doi.org/10.1007/BF01059717 doi: 10.1007/BF01059717
![]() |
[21] | A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has positive real part, J. Inequal. Pure Appl. Math., 7 (2006), 50. |
[22] | A. Janteng, S. A. Halim, M. Darus, Hankel deteminant for starlike and convex functions, Internat. J. Math. Anal., 1 (2007), 619–625. |
[23] |
S. Kanas, H. E. Darwish, Fekete-Szegö problem for starlike and convex functions of complex order, Appl. Math. Lett., 23 (2010), 777–782. http://dx.doi.org/10.1016/j.aml.2010.03.008 doi: 10.1016/j.aml.2010.03.008
![]() |
[24] | S. Kanas, A. Lecko, On the Fekete-Szegö problem and the domain convexity for a certain class of univalent functions, Folia Sci. Univ. Tech. Resolv., 73 (1990), 49–58. |
[25] |
F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. http://dx.doi.org/10.1090/S0002-9939-1969-0232926-9 doi: 10.1090/S0002-9939-1969-0232926-9
![]() |
[26] |
M. G. Khan, B. Ahmad, W. K. Mashwani, T. G. Shaba, M. Arif, Third Hankel determinant problem for certain subclasses of analytic functions associated with nephroid domain, Earthline J. Math. Sci., 6 (2021), 293–308. http://dx.doi.org/10.34198/ejms.6221.293308 doi: 10.34198/ejms.6221.293308
![]() |
[27] |
M. G. Khan, B. Ahmad, G. Murugusundaramoorthy, W. K. Mashwani, S. Yalçin, T. G. Shaba, Z. Salleh, Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function, J. Math. Comput. Sci., 25 (2022), 29–36. http://dx.doi.org/10.22436/jmcs.025.01.04 doi: 10.22436/jmcs.025.01.04
![]() |
[28] |
W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89–95. http://dx.doi.org/10.2307/2046556 doi: 10.2307/2046556
![]() |
[29] |
W. Koepf, On the Fekete-Szegö problem for close-to-convex functions. II, Arch. Math. (Basel), 49 (1987), 420–433. http://dx.doi.org/10.1007/BF01194100 doi: 10.1007/BF01194100
![]() |
[30] |
B. Kowalczyk, A. Lecko, Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function depend on a real parameter, J. Inequal. Appl., 2014 (2014), 65. http://dx.doi.org/10.1186/1029-242X-2014-65 doi: 10.1186/1029-242X-2014-65
![]() |
[31] |
D. V. Krishna, B. Venkateswarlu, T. R. Reddy, Third Hankel determinant for bounded turning function of order alpha, J. Nigerian Math. Soc., 34 (2015), 121–127. http://dx.doi.org/10.1016/j.jnnms.2015.03.001 doi: 10.1016/j.jnnms.2015.03.001
![]() |
[32] |
D. V. Krishna, T. R. Reddy, Coefficient inequality for certain subclasses of analytic functions associated with Hankel determinant, Indian J. Pure Appl. Math., 46 (2015), 91–106. http://dx.doi.org/10.1007/s13226-015-0111-1 doi: 10.1007/s13226-015-0111-1
![]() |
[33] |
V. S. Kumar, R. B. Sharma, M. Haripriya, Third Hankel determinant for Bazilevic functions related to a leaf like domain, AIP Conf. Proc., 2112 (2019), 020088. http://dx.doi.org/10.1063/1.5112273 doi: 10.1063/1.5112273
![]() |
[34] |
S. K. Lee, V. Ravichandran, S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013 (2013), 281. http://dx.doi.org/10.1186/1029-242X-2013-281 doi: 10.1186/1029-242X-2013-281
![]() |
[35] | A. Lecko, Some generalization of analytic condition for class of functions convex in a given direction, Folia Sci. Univ. Tech. Resolv., 121 (1993), 23–24. |
[36] |
R. J. Libera, E. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), 251–257. http://dx.doi.org/10.1090/S0002-9939-1983-0681830-8 doi: 10.1090/S0002-9939-1983-0681830-8
![]() |
[37] |
T. H. MacGregor, Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532–537. http://dx.doi.org/10.2307/1993803 doi: 10.2307/1993803
![]() |
[38] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, People's Republic of China, June 19-23, 1992), International Press, Cambridge, Massachusetts, 1994 157–169. |
[39] |
S. Mahmood, H. M. Srivastava, N. Khan, Q. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of q-starlike functions, Symmetry, 11 (2019), 347. http://dx.doi.org/10.3390/sym11030347 doi: 10.3390/sym11030347
![]() |
[40] | A. K. Mishra, P. Gochhayat, Applications of the Owa-Srivastava operator to the class of k-uniformly convex functions, Fract. Calc. Appl. Anal., 9 (2006), 323–331. |
[41] |
A. K. Mishra, P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, Internat. J. Math. Math. Sci., 2008 (2008), 153280. http://dx.doi.org/10.1155/2008/153280 doi: 10.1155/2008/153280
![]() |
[42] |
A. K. Mishra, P. Gochhayat, The Fekete-Szegö problem for k-uniformly convex functions and for a class defined by the Owa-Srivastava operator, J. Math. Anal. Appl., 347 (2008), 563–572. http://dx.doi.org/10.1016/j.jmaa.2008.06.009 doi: 10.1016/j.jmaa.2008.06.009
![]() |
[43] |
A. K. Mishra, P. Gochhayat, Fekete-Szegö problem for a class defined by an integral operator, Kodai Math. J., 33 (2010), 310–328. http://dx.doi.org/10.2996/kmj/1278076345 doi: 10.2996/kmj/1278076345
![]() |
[44] |
A. K. Mishra, P. Gochhayat, A coefficient inequality for a subclass of the Carathéodory functions defined by conical domains, Comput. Math. Appl., 61 (2011), 2816–2820. http://dx.doi.org/10.1016/j.camwa.2011.03.052 doi: 10.1016/j.camwa.2011.03.052
![]() |
[45] |
A. K. Mishra, S. N. Kund, The second Hankel determinant for a class of analytic functions associated with the Carlson-Shaffer operator, Tamkang J. Math., 44 (2013), 73–82. http://dx.doi.org/10.5556/J.TKJM.44.2013.963 doi: 10.5556/J.TKJM.44.2013.963
![]() |
[46] | G. Murugusundaramoorthy, K. Vijaya, Second Hankel determinant for bi-univalent analytic functions associated with Hohlov operator, Internat. J. Anal. Appl., 8 (2015), 22–29. |
[47] |
G. Murugusundaramoorthy, T. Janani, N. E. Cho, Bi-univalent functions of complex order based on subordinate conditions involving Hurwitz-Lerch Zeta function, East Asian Math. J., 32 (2016), 47–59. http://dx.doi.org/10.7858/eamj.2016.006 doi: 10.7858/eamj.2016.006
![]() |
[48] | A. Naik, T. Panigrahi, Upper bound hankel determinant for bounded turning function associated with Sălăgean-difference operator, Surveys Math. Appl., 15 (2020), 525–543. |
[49] |
J. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (1976), 337–346. http://dx.doi.org/10.2307/1997533 doi: 10.2307/1997533
![]() |
[50] | K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Appl., 28 (1983), 731–739. |
[51] | K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. http://dx.doi.org/10.1006/jmaa.1999.6501 |
[52] |
K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Imp. Univ. Ser. I Math., 2 (1934), 129–155. http://dx.doi.org/10.14492/hokmj/1531209828 doi: 10.14492/hokmj/1531209828
![]() |
[53] |
S. Owa, H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057–1077. http://dx.doi.org/10.4153/CJM-1987-054-3 doi: 10.4153/CJM-1987-054-3
![]() |
[54] |
Z. Peng, On the Fekete-Szegö problem for a class of analytic functions, ISRN Math. Anal., 2014 (2014), 861671. http://dx.doi.org/10.1155/2014/861671 doi: 10.1155/2014/861671
![]() |
[55] |
M. H. Priya, R. B. Sharma, On a class of bounded turning functions subordinate to a leaf-like domain, J. Phys.: Conf. Ser., 1000 (2018), 012056. http://dx.doi.org/10.1088/1742-6596/1000/1/012056 doi: 10.1088/1742-6596/1000/1/012056
![]() |
[56] |
M. Raza, S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), 412. http://dx.doi.org/10.1186/1029-242X-2013-412 doi: 10.1186/1029-242X-2013-412
![]() |
[57] | T. R. Reddy, D. V. Krishna, Hankel determinant for starlike and convex functions with respect to symmetric points, J. Indian Math. Soc. (New Ser.), 79 (2012), 161–171. |
[58] | W. C. Royster, Univalent functions convex in one direction, Publ. Math. Debrecen, 23 (1976), 339–345. |
[59] |
S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. http://dx.doi.org/10.2307/2039801 doi: 10.2307/2039801
![]() |
[60] |
M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers, Symmetry, 12 (2020), 1043. http://dx.doi.org/10.3390/sym12061043 doi: 10.3390/sym12061043
![]() |
[61] |
L. Shi, H. M. Srivastava, M. Arif, S. Hussain, H. Khan, An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11 (2019), 598. http://dx.doi.org/10.3390/sym11050598 doi: 10.3390/sym11050598
![]() |
[62] |
H. M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discr. Math., 1 (2007), 56–71. http://dx.doi.org/10.2298/AADM0701056S doi: 10.2298/AADM0701056S
![]() |
[63] |
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. http://dx.doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
![]() |
[64] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520. |
[65] |
H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H. H. Shah, Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli, Mathematics, 7 (2019), 848. http://dx.doi.org/10.3390/math7090848 doi: 10.3390/math7090848
![]() |
[66] | H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal., 22 (2021), 511–526. |
[67] |
H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math., 167 (2021), 102942. http://dx.doi.org/10.1016/j.bulsci.2020.102942 doi: 10.1016/j.bulsci.2020.102942
![]() |
[68] |
H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a subclasses of close to convex functions, Complex Variables Theory Appl., 44 (2001), 145–163. http://dx.doi.org/10.1080/17476930108815351 doi: 10.1080/17476930108815351
![]() |
[69] |
H. M. Srivastava, A. O. Mostafa, M. K. Aouf, H. M. Zayed, Basic and fractional q-calculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order, Miskolc Math. Notes, 20 (2019), 489–509. http://dx.doi.org/10.18514/MMN.2019.2405 doi: 10.18514/MMN.2019.2405
![]() |
[70] |
H. M. Srivastava, G. Murugusundaramoorthy, N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global J. Math. Anal., 1 (2013), 67–73. http://dx.doi.org/10.14419/gjma.v1i2.937 doi: 10.14419/gjma.v1i2.937
![]() |
[71] |
H. M. Srivastava, G. Murugusundaramoorthy, K. Vijaya, Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator, J. Class. Anal., 2 (2013), 167–181. http://dx.doi.org/10.7153/jca-02-14 doi: 10.7153/jca-02-14
![]() |
[72] | H. M. Srivastava, S. Owa, Current Topics in Analytic Function Theory, Singapore, New Jersey, London, Hong Kong: World Scientific Publishing Company, 1992. http://dx.doi.org/10.1142/1628 |
[73] |
P. Sumalatha, R. B. Sharma, M. H. Priya, The third Hankel determinant for starlike functions with respect to symmetric points subordinate to k-Fibonacci sequence, AIP Conf. Proc., 2112 (2019), 020069. http://dx.doi.org/10.1063/1.5112254 doi: 10.1063/1.5112254
![]() |
[74] |
T. Yavuz, Second Hankel determinant problem for a certain subclass of univalent functions, Internat. J. Math. Anal., 9 (2015), 493–498. http://dx.doi.org/10.12988/ijma.2015.5115 doi: 10.12988/ijma.2015.5115
![]() |
[75] | T. Yavuz, Second Hankel determinant for analytic functions defined by Ruscheweyh derivative, Internat. J. Anal. Appl., 8 (2015), 63–68. |
[76] |
H. M. Zayed, H. Irmak, Some inequalities in relation with Fekete-Szegö problems specified by the Hadamard products of certain meromorphically analytic functions in the punctured unit disc, Afr. Mat., 30 (2019), 715–724. http://dx.doi.org/10.1007/s13370-019-00678-z doi: 10.1007/s13370-019-00678-z
![]() |
1. | Ying Cheng, Rekha Srivastava, Jin-Lin Liu, Applications of the q-Derivative Operator to New Families of Bi-Univalent Functions Related to the Legendre Polynomials, 2022, 11, 2075-1680, 595, 10.3390/axioms11110595 | |
2. | H. M. Srivastava, Sarem H. Hadi, Maslina Darus, Some subclasses of p-valent $$\gamma $$-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator, 2023, 117, 1578-7303, 10.1007/s13398-022-01378-3 | |
3. | Sadia Riaz, Timilehin Gideon Shaba, Qin Xin, Fairouz Tchier, Bilal Khan, Sarfraz Nawaz Malik, Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials, 2023, 7, 2504-3110, 295, 10.3390/fractalfract7040295 | |
4. | Abbas Kareem Wanas, Fethiye Müge Sakar, Alina Alb Lupaş, Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with (p,q)-Wanas Operator, 2023, 12, 2075-1680, 430, 10.3390/axioms12050430 | |
5. | Timilehin Gideon Shaba, Serkan Araci, Babatunde Olufemi Adebesin, 2024, Utilizing the q-Shaba Differential Operator on a Specific Category of Analytic Functions, 979-8-3503-5815-5, 1, 10.1109/SEB4SDG60871.2024.10629691 | |
6. | Sercan Kazımoğlu, Erhan Deniz, Luminiţa-Ioana Cotîrlă, Certain Subclasses of Analytic and Bi-Univalent Functions Governed by the Gegenbauer Polynomials Linked with q-Derivative, 2023, 15, 2073-8994, 1192, 10.3390/sym15061192 | |
7. | Sercan Kazımoğlu, Erhan Deniz, H. M. Srivastava, Sharp Coefficients Bounds for Starlike Functions Associated with Gregory Coefficients, 2024, 18, 1661-8254, 10.1007/s11785-023-01445-6 | |
8. | H.M. Srivastava, Biswajit Rath, K. Sanjay Kumar, D. Vamshee Krishna, Some sharp bounds of the third-order Hankel determinant for the inverses of the Ozaki type close-to-convex functions, 2024, 191, 00074497, 103381, 10.1016/j.bulsci.2023.103381 | |
9. | Huo Tang, Zeeshan Mujahid, Nazar Khan, Fairouz Tchier, Muhammad Ghaffar Khan, Generalized Bounded Turning Functions Connected with Gregory Coefficients, 2024, 13, 2075-1680, 359, 10.3390/axioms13060359 | |
10. | Hari M. Srivastava, Nazar Khan, Muhtarr A. Bah, Ayman Alahmade, Ferdous M. O. Tawfiq, Zainab Syed, Fourth order Hankel determinants for certain subclasses of modified sigmoid-activated analytic functions involving the trigonometric sine function, 2024, 2024, 1029-242X, 10.1186/s13660-024-03150-0 | |
11. | Daniel Breaz, Gangadharan Murugusundaramoorthy, Kaliappan Vijaya, Luminiţa-Ioana Cotîrlǎ, Certain Class of Bi-Univalent Functions Defined by Sălăgean q-Difference Operator Related with Involution Numbers, 2023, 15, 2073-8994, 1302, 10.3390/sym15071302 | |
12. | Sarem H. Hadi, Maslina Darus, Badriah Alamri, Şahsene Altınkaya, Abdullah Alatawi, On classes of ζ -uniformly q -analogue of analytic functions with some subordination results , 2024, 32, 2769-0911, 10.1080/27690911.2024.2312803 | |
13. | Hari M. Srivastava, Daniel Breaz, Alhanouf Alburaikan, Sheza M. El-Deeb, Upper bound for the second and third Hankel determinants of analytic functions associated with the error function and q-convolution combination, 2024, 2024, 1029-242X, 10.1186/s13660-024-03151-z | |
14. | Timilehin Gideon Shaba, Serkan Araci, Babatunde Olufemi Adebesin, 2024, Application of Three Leaf Domain on a Subclass of Bi-univalent Functions, 979-8-3503-5815-5, 1, 10.1109/SEB4SDG60871.2024.10629753 | |
15. | H.M. Srivastava, Timilehin Gideon Shaba, Musthafa Ibrahim, Fairouz Tchier, Bilal Khan, Coefficient bounds and second Hankel determinant for a subclass of symmetric bi-starlike functions involving Euler polynomials, 2024, 192, 00074497, 103405, 10.1016/j.bulsci.2024.103405 | |
16. | Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla, Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions, 2024, 9, 2473-6988, 8134, 10.3934/math.2024395 | |
17. | Tariq Al-Hawary, Basem Aref Frasin, Abbas Kareem Wanas, Georgia Irina Oros, On Rabotnov fractional exponential function for bi-univalent subclasses, 2023, 16, 1793-5571, 10.1142/S1793557123502170 | |
18. | Ekram E. Ali, H.M. Srivastava, Wafaa Y. Kota, Rabha M. El-Ashwah, Abeer M. Albalah, The second Hankel determinant and the Fekete-Szegö functional for a subclass of analytic functions by using the q-Sălăgean derivative operator, 2025, 116, 11100168, 141, 10.1016/j.aej.2024.12.019 | |
19. | Winne Bareh, D. Vamshee Krishna, Biswajit Rath, Exact bounds to the Toeplitz determinants of certain order, Zalcman conjecture and Krushkals inequalities for the functions associated with the lemniscate of Bernoulli, 2025, 00074497, 103585, 10.1016/j.bulsci.2025.103585 | |
20. | Mihai Aron, Coefficient estimates and Fekete-Szegö problem for some classes of univalent functions generalized to a complex order, 2025, 58, 2391-4661, 10.1515/dema-2024-0086 | |
21. | Zhi-Gang Wang, H.M. Srivastava, M. Arif, Zhi-Hong Liu, K. Ullah, Sharp bounds on Hankel determinants of bounded turning functions involving the hyperbolic tangent function, 2024, 18, 1452-8630, 551, 10.2298/AADM221203013W | |
22. | Majid Khan, Nazar Khan, Qin Xin, Fairouz Tchier, Sarfraz Malik, Qazi Ahmad, Hankel determinant and related problems for q-analogue of convex functions, 2024, 38, 0354-5180, 3027, 10.2298/FIL2409027K |