In this paper, we introduce and study a new subclass of normalized functions that are analytic and univalent in the open unit disk $ \mathbb{U} = \{z:z\in \mathcal{C}\; \; \text{and}\; \; |z| < 1\}, $ which satisfies the following geometric criterion:
$ \begin{equation*} \Re\left(\frac{\mathcal{L}_{u, v}^{w}f(z)}{z}(1-e^{-2i\phi}\mu^2z^2)e^{i\phi}\right)>0, \end{equation*} $
where $ z\in \mathbb{U} $, $ 0\leqq \mu\leqq 1 $ and $ \phi\in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) $, and which is associated with the Hohlov operator $ \mathcal{L}_{u, v}^{w} $. For functions in this class, the coefficient bounds, as well as upper estimates for the Fekete-Szegö functional and the Hankel determinant, are investigated.
Citation: Hari Mohan Srivastava, Timilehin Gideon Shaba, Gangadharan Murugusundaramoorthy, Abbas Kareem Wanas, Georgia Irina Oros. The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator[J]. AIMS Mathematics, 2023, 8(1): 340-360. doi: 10.3934/math.2023016
In this paper, we introduce and study a new subclass of normalized functions that are analytic and univalent in the open unit disk $ \mathbb{U} = \{z:z\in \mathcal{C}\; \; \text{and}\; \; |z| < 1\}, $ which satisfies the following geometric criterion:
$ \begin{equation*} \Re\left(\frac{\mathcal{L}_{u, v}^{w}f(z)}{z}(1-e^{-2i\phi}\mu^2z^2)e^{i\phi}\right)>0, \end{equation*} $
where $ z\in \mathbb{U} $, $ 0\leqq \mu\leqq 1 $ and $ \phi\in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) $, and which is associated with the Hohlov operator $ \mathcal{L}_{u, v}^{w} $. For functions in this class, the coefficient bounds, as well as upper estimates for the Fekete-Szegö functional and the Hankel determinant, are investigated.
[1] | A. Abubaker, M. Darus, Hankel determinant for a class of analytic functions involving a generalized linear differential operator, Internat. J. Pure Appl. Math., 69 (2011), 429–435. |
[2] | M. K. Aouf, R. M. El-Ashwah, H. M. Zayed, Fekete-Szegö inequalities for certain class of meromorphic functions, J. Egyptian Math. Soc., 21 (2013), 197–200. http://dx.doi.org/10.1016/j.joems.2013.03.013 doi: 10.1016/j.joems.2013.03.013 |
[3] | M. K. Aouf, R. M. El-Ashwah, H. M. Zayed, Fekete-Szegö inequalities for $p$-valent starlike and convex functions of complex order, J. Egyptian Math. Soc., 22 (2014), 190–196. http://dx.doi.org/10.1016/j.joems.2013.06.012 doi: 10.1016/j.joems.2013.06.012 |
[4] | R. O. Ayinla, T. O. Opoola, The Fekete Szegö functional and second Hankel determinant for a certain subclass of analytic functions, Appl. Math., 10 (2019), 1071–1078. http://dx.doi.org/10.4236/am.2019.1012074 doi: 10.4236/am.2019.1012074 |
[5] | K. O. Babalola, On $H_3(1)$ Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, 6 (2010), 1–7. |
[6] | D. Bansal, S. Maharana, J. K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc., 52 (2015), 1139–1148. http://dx.doi.org/10.4134/JKMS.2015.52.6.1139 doi: 10.4134/JKMS.2015.52.6.1139 |
[7] | S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429–446. http://dx.doi.org/10.1090/S0002-9947-1969-0232920-2 doi: 10.1090/S0002-9947-1969-0232920-2 |
[8] | B. Bhowmik, S. Ponnusamy, K.-J. Wirths, On the Fekete-Szegö problem for concave univalent functions, J. Math. Anal. Appl., 373 (2011), 432–438. http://dx.doi.org/10.1016/j.jmaa.2010.07.054 doi: 10.1016/j.jmaa.2010.07.054 |
[9] | B. C. Carlson, D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737–745. http://dx.doi.org/10.1137/0515057 doi: 10.1137/0515057 |
[10] | N. E. Cho, B. Kowalczyk, A. Lecko, Fekete-Szegö problem for close-to-convex functions with respect to a certain convex function depend on a real parameter, Front. Math. China, 11 (2016), 1471–1500. http://dx.doi.org/10.1007/s11464-015-0510-y doi: 10.1007/s11464-015-0510-y |
[11] | J. H. Choi, M. Saigo, H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432–445. http://dx.doi.org/10.1016/S0022-247X(02)00500-0 doi: 10.1016/S0022-247X(02)00500-0 |
[12] | P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983. |
[13] | J. Dziok, A general solution of the Fekete-Szegö problem, Boundary Value Prob., 2013 (2013), 98. http://dx.doi.org/10.1186/1687-2770-2013-98 doi: 10.1186/1687-2770-2013-98 |
[14] | J. Dziok, H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14 (2003), 7–18. http://dx.doi.org/10.1080/10652460304543 doi: 10.1080/10652460304543 |
[15] | J. Dziok, H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1–13. http://dx.doi.org/10.1016/S0096-3003(98)10042-5 doi: 10.1016/S0096-3003(98)10042-5 |
[16] | M. Fekete, G. Szegö, Eine Bemerkung Über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85–89. http://dx.doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85 |
[17] | P. Gochhayat, A. Prajapat, A. K. Sahoo, Coefficient estimates of certain subclasses of analytic functions associated with Hohlov operator, Asian-Eur. J. Math., 14 (2021), 2150021. http://dx.doi.org/10.1142/S1793557121500212 doi: 10.1142/S1793557121500212 |
[18] | W. Hengartner, G. Schober, On schlicht mappings to domain convex in one direction, Comment. Math. Helv., 45 (1970), 303–314. http://dx.doi.org/10.1007/BF02567334 doi: 10.1007/BF02567334 |
[19] | Yu. E. Hohlov, Hadamard convolution, hypergeometric functions and linear operators in the class of univalent functions, Dokl. Akad. Nauk Ukr. SSR Ser. A, 7 (1984), 25–27. |
[20] | Yu. E. Hohlov, Convolution operators preserving univalent functions, Ukr. Math. J., 37 (1985), 220–226. http://dx.doi.org/10.1007/BF01059717 doi: 10.1007/BF01059717 |
[21] | A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has positive real part, J. Inequal. Pure Appl. Math., 7 (2006), 50. |
[22] | A. Janteng, S. A. Halim, M. Darus, Hankel deteminant for starlike and convex functions, Internat. J. Math. Anal., 1 (2007), 619–625. |
[23] | S. Kanas, H. E. Darwish, Fekete-Szegö problem for starlike and convex functions of complex order, Appl. Math. Lett., 23 (2010), 777–782. http://dx.doi.org/10.1016/j.aml.2010.03.008 doi: 10.1016/j.aml.2010.03.008 |
[24] | S. Kanas, A. Lecko, On the Fekete-Szegö problem and the domain convexity for a certain class of univalent functions, Folia Sci. Univ. Tech. Resolv., 73 (1990), 49–58. |
[25] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. http://dx.doi.org/10.1090/S0002-9939-1969-0232926-9 doi: 10.1090/S0002-9939-1969-0232926-9 |
[26] | M. G. Khan, B. Ahmad, W. K. Mashwani, T. G. Shaba, M. Arif, Third Hankel determinant problem for certain subclasses of analytic functions associated with nephroid domain, Earthline J. Math. Sci., 6 (2021), 293–308. http://dx.doi.org/10.34198/ejms.6221.293308 doi: 10.34198/ejms.6221.293308 |
[27] | M. G. Khan, B. Ahmad, G. Murugusundaramoorthy, W. K. Mashwani, S. Yalçin, T. G. Shaba, Z. Salleh, Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function, J. Math. Comput. Sci., 25 (2022), 29–36. http://dx.doi.org/10.22436/jmcs.025.01.04 doi: 10.22436/jmcs.025.01.04 |
[28] | W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89–95. http://dx.doi.org/10.2307/2046556 doi: 10.2307/2046556 |
[29] | W. Koepf, On the Fekete-Szegö problem for close-to-convex functions. II, Arch. Math. $($Basel$)$, 49 (1987), 420–433. http://dx.doi.org/10.1007/BF01194100 doi: 10.1007/BF01194100 |
[30] | B. Kowalczyk, A. Lecko, Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function depend on a real parameter, J. Inequal. Appl., 2014 (2014), 65. http://dx.doi.org/10.1186/1029-242X-2014-65 doi: 10.1186/1029-242X-2014-65 |
[31] | D. V. Krishna, B. Venkateswarlu, T. R. Reddy, Third Hankel determinant for bounded turning function of order alpha, J. Nigerian Math. Soc., 34 (2015), 121–127. http://dx.doi.org/10.1016/j.jnnms.2015.03.001 doi: 10.1016/j.jnnms.2015.03.001 |
[32] | D. V. Krishna, T. R. Reddy, Coefficient inequality for certain subclasses of analytic functions associated with Hankel determinant, Indian J. Pure Appl. Math., 46 (2015), 91–106. http://dx.doi.org/10.1007/s13226-015-0111-1 doi: 10.1007/s13226-015-0111-1 |
[33] | V. S. Kumar, R. B. Sharma, M. Haripriya, Third Hankel determinant for Bazilevic functions related to a leaf like domain, AIP Conf. Proc., 2112 (2019), 020088. http://dx.doi.org/10.1063/1.5112273 doi: 10.1063/1.5112273 |
[34] | S. K. Lee, V. Ravichandran, S. Supramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013 (2013), 281. http://dx.doi.org/10.1186/1029-242X-2013-281 doi: 10.1186/1029-242X-2013-281 |
[35] | A. Lecko, Some generalization of analytic condition for class of functions convex in a given direction, Folia Sci. Univ. Tech. Resolv., 121 (1993), 23–24. |
[36] | R. J. Libera, E. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$, Proc. Amer. Math. Soc., 87 (1983), 251–257. http://dx.doi.org/10.1090/S0002-9939-1983-0681830-8 doi: 10.1090/S0002-9939-1983-0681830-8 |
[37] | T. H. MacGregor, Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532–537. http://dx.doi.org/10.2307/1993803 doi: 10.2307/1993803 |
[38] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, People's Republic of China, June 19-23, 1992), International Press, Cambridge, Massachusetts, 1994 157–169. |
[39] | S. Mahmood, H. M. Srivastava, N. Khan, Q. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of $q$-starlike functions, Symmetry, 11 (2019), 347. http://dx.doi.org/10.3390/sym11030347 doi: 10.3390/sym11030347 |
[40] | A. K. Mishra, P. Gochhayat, Applications of the Owa-Srivastava operator to the class of $k$-uniformly convex functions, Fract. Calc. Appl. Anal., 9 (2006), 323–331. |
[41] | A. K. Mishra, P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, Internat. J. Math. Math. Sci., 2008 (2008), 153280. http://dx.doi.org/10.1155/2008/153280 doi: 10.1155/2008/153280 |
[42] | A. K. Mishra, P. Gochhayat, The Fekete-Szegö problem for $k$-uniformly convex functions and for a class defined by the Owa-Srivastava operator, J. Math. Anal. Appl., 347 (2008), 563–572. http://dx.doi.org/10.1016/j.jmaa.2008.06.009 doi: 10.1016/j.jmaa.2008.06.009 |
[43] | A. K. Mishra, P. Gochhayat, Fekete-Szegö problem for a class defined by an integral operator, Kodai Math. J., 33 (2010), 310–328. http://dx.doi.org/10.2996/kmj/1278076345 doi: 10.2996/kmj/1278076345 |
[44] | A. K. Mishra, P. Gochhayat, A coefficient inequality for a subclass of the Carathéodory functions defined by conical domains, Comput. Math. Appl., 61 (2011), 2816–2820. http://dx.doi.org/10.1016/j.camwa.2011.03.052 doi: 10.1016/j.camwa.2011.03.052 |
[45] | A. K. Mishra, S. N. Kund, The second Hankel determinant for a class of analytic functions associated with the Carlson-Shaffer operator, Tamkang J. Math., 44 (2013), 73–82. http://dx.doi.org/10.5556/J.TKJM.44.2013.963 doi: 10.5556/J.TKJM.44.2013.963 |
[46] | G. Murugusundaramoorthy, K. Vijaya, Second Hankel determinant for bi-univalent analytic functions associated with Hohlov operator, Internat. J. Anal. Appl., 8 (2015), 22–29. |
[47] | G. Murugusundaramoorthy, T. Janani, N. E. Cho, Bi-univalent functions of complex order based on subordinate conditions involving Hurwitz-Lerch Zeta function, East Asian Math. J., 32 (2016), 47–59. http://dx.doi.org/10.7858/eamj.2016.006 doi: 10.7858/eamj.2016.006 |
[48] | A. Naik, T. Panigrahi, Upper bound hankel determinant for bounded turning function associated with Sălăgean-difference operator, Surveys Math. Appl., 15 (2020), 525–543. |
[49] | J. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean $p$-valent functions, Trans. Amer. Math. Soc., 223 (1976), 337–346. http://dx.doi.org/10.2307/1997533 doi: 10.2307/1997533 |
[50] | K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Appl., 28 (1983), 731–739. |
[51] | K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. http://dx.doi.org/10.1006/jmaa.1999.6501 |
[52] | K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Imp. Univ. Ser. I Math., 2 (1934), 129–155. http://dx.doi.org/10.14492/hokmj/1531209828 doi: 10.14492/hokmj/1531209828 |
[53] | S. Owa, H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057–1077. http://dx.doi.org/10.4153/CJM-1987-054-3 doi: 10.4153/CJM-1987-054-3 |
[54] | Z. Peng, On the Fekete-Szegö problem for a class of analytic functions, ISRN Math. Anal., 2014 (2014), 861671. http://dx.doi.org/10.1155/2014/861671 doi: 10.1155/2014/861671 |
[55] | M. H. Priya, R. B. Sharma, On a class of bounded turning functions subordinate to a leaf-like domain, J. Phys.: Conf. Ser., 1000 (2018), 012056. http://dx.doi.org/10.1088/1742-6596/1000/1/012056 doi: 10.1088/1742-6596/1000/1/012056 |
[56] | M. Raza, S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), 412. http://dx.doi.org/10.1186/1029-242X-2013-412 doi: 10.1186/1029-242X-2013-412 |
[57] | T. R. Reddy, D. V. Krishna, Hankel determinant for starlike and convex functions with respect to symmetric points, J. Indian Math. Soc. $($New Ser.$)$, 79 (2012), 161–171. |
[58] | W. C. Royster, Univalent functions convex in one direction, Publ. Math. Debrecen, 23 (1976), 339–345. |
[59] | S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115. http://dx.doi.org/10.2307/2039801 doi: 10.2307/2039801 |
[60] | M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with $k$-Fibonacci numbers, Symmetry, 12 (2020), 1043. http://dx.doi.org/10.3390/sym12061043 doi: 10.3390/sym12061043 |
[61] | L. Shi, H. M. Srivastava, M. Arif, S. Hussain, H. Khan, An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11 (2019), 598. http://dx.doi.org/10.3390/sym11050598 doi: 10.3390/sym11050598 |
[62] | H. M. Srivastava, Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators, Appl. Anal. Discr. Math., 1 (2007), 56–71. http://dx.doi.org/10.2298/AADM0701056S doi: 10.2298/AADM0701056S |
[63] | H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A$:$ Sci., 44 (2020), 327–344. http://dx.doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[64] | H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., 22 (2021), 1501–1520. |
[65] | H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H. H. Shah, Upper bound of the third Hankel determinant for a subclass of close-to-convex functions associated with the lemniscate of Bernoulli, Mathematics, 7 (2019), 848. http://dx.doi.org/10.3390/math7090848 doi: 10.3390/math7090848 |
[66] | H. M. Srivastava, G. Kaur, G. Singh, Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains, J. Nonlinear Convex Anal., 22 (2021), 511–526. |
[67] | H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with the $q$-exponential function, Bull. Sci. Math., 167 (2021), 102942. http://dx.doi.org/10.1016/j.bulsci.2020.102942 doi: 10.1016/j.bulsci.2020.102942 |
[68] | H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a subclasses of close to convex functions, Complex Variables Theory Appl., 44 (2001), 145–163. http://dx.doi.org/10.1080/17476930108815351 doi: 10.1080/17476930108815351 |
[69] | H. M. Srivastava, A. O. Mostafa, M. K. Aouf, H. M. Zayed, Basic and fractional $q$-calculus and associated Fekete-Szegö problem for $p$-valently $q$-starlike functions and $p$-valently $q$-convex functions of complex order, Miskolc Math. Notes, 20 (2019), 489–509. http://dx.doi.org/10.18514/MMN.2019.2405 doi: 10.18514/MMN.2019.2405 |
[70] | H. M. Srivastava, G. Murugusundaramoorthy, N. Magesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Global J. Math. Anal., 1 (2013), 67–73. http://dx.doi.org/10.14419/gjma.v1i2.937 doi: 10.14419/gjma.v1i2.937 |
[71] | H. M. Srivastava, G. Murugusundaramoorthy, K. Vijaya, Coefficient estimates for some families of bi-Bazilevič functions of the Ma-Minda type involving the Hohlov operator, J. Class. Anal., 2 (2013), 167–181. http://dx.doi.org/10.7153/jca-02-14 doi: 10.7153/jca-02-14 |
[72] | H. M. Srivastava, S. Owa, Current Topics in Analytic Function Theory, Singapore, New Jersey, London, Hong Kong: World Scientific Publishing Company, 1992. http://dx.doi.org/10.1142/1628 |
[73] | P. Sumalatha, R. B. Sharma, M. H. Priya, The third Hankel determinant for starlike functions with respect to symmetric points subordinate to $k$-Fibonacci sequence, AIP Conf. Proc., 2112 (2019), 020069. http://dx.doi.org/10.1063/1.5112254 doi: 10.1063/1.5112254 |
[74] | T. Yavuz, Second Hankel determinant problem for a certain subclass of univalent functions, Internat. J. Math. Anal., 9 (2015), 493–498. http://dx.doi.org/10.12988/ijma.2015.5115 doi: 10.12988/ijma.2015.5115 |
[75] | T. Yavuz, Second Hankel determinant for analytic functions defined by Ruscheweyh derivative, Internat. J. Anal. Appl., 8 (2015), 63–68. |
[76] | H. M. Zayed, H. Irmak, Some inequalities in relation with Fekete-Szegö problems specified by the Hadamard products of certain meromorphically analytic functions in the punctured unit disc, Afr. Mat., 30 (2019), 715–724. http://dx.doi.org/10.1007/s13370-019-00678-z doi: 10.1007/s13370-019-00678-z |