Research article

Hankel determinants, Fekete-Szegö inequality, and estimates of initial coefficients for certain subclasses of analytic functions

  • Received: 04 December 2023 Revised: 21 January 2024 Accepted: 29 January 2024 Published: 05 February 2024
  • MSC : 30C45, 30C50

  • In this paper, we define new subclasses of analytic functions related to a modified sigmoid function and analytic univalent function. Then, we attempt to investigate the upper bounds of the third and fourth Hankel determinant in the special case. Further, bound on third Hankel determinant of its inverse function is also investigated. In addition, we attempt to obtain the Fekete-Szegö inequality for the classes. Then, we estimate the bounds of initial coefficients for the function belongs to some kind of new subclasses when its inverse function also belongs to these new subclasses.

    Citation: Wenzheng Hu, Jian Deng. Hankel determinants, Fekete-Szegö inequality, and estimates of initial coefficients for certain subclasses of analytic functions[J]. AIMS Mathematics, 2024, 9(3): 6445-6467. doi: 10.3934/math.2024314

    Related Papers:

  • In this paper, we define new subclasses of analytic functions related to a modified sigmoid function and analytic univalent function. Then, we attempt to investigate the upper bounds of the third and fourth Hankel determinant in the special case. Further, bound on third Hankel determinant of its inverse function is also investigated. In addition, we attempt to obtain the Fekete-Szegö inequality for the classes. Then, we estimate the bounds of initial coefficients for the function belongs to some kind of new subclasses when its inverse function also belongs to these new subclasses.



    加载中


    [1] I. Graham, G. Kohr, Geometric function theory in one and higher dimensions, New York: Marcel Dekker, 2003. https://doi.org/10.1201/9780203911624
    [2] J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, T. Am. Math. Soc., 223 (1976), 337–346. https://doi.org/10.1090/S0002-9947-1976-0422607-9 doi: 10.1090/S0002-9947-1976-0422607-9
    [3] W. Ma, C. Minda, Aunified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis, Boston: International Press, 1992.
    [4] P. Goel, S. S. Kumar, Certain class of starlike functions associated with modified function, B. Malays. Math. Sci. So., 43 (2020), 957–991. https://doi.org/10.1007/s40840-019-00784-y doi: 10.1007/s40840-019-00784-y
    [5] J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101–105.
    [6] K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27 (2016), 923–939. https://doi.org/10.1007/s13370-015-0387-7 doi: 10.1007/s13370-015-0387-7
    [7] L. Shi, I. Ali, M. Arif, N. E. Cho, S. Hussain, H. Khan, A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics, 7 (2019), 418. https://doi.org/10.3390/math7050418 doi: 10.3390/math7050418
    [8] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, B. Malays. Math. Sci. So., 38 (2015), 365–386. https://doi.org/10.1093/oxarti/kcv022 doi: 10.1093/oxarti/kcv022
    [9] R. K. Raina, J. Sokol, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427–1433. https://doi.org/10.15672/HJMS.2015449676 doi: 10.15672/HJMS.2015449676
    [10] S. S. Kumar, K. Arora, Starlike functions associated with a petal shaped domain, arXiv Preprint, 2020.
    [11] A. Alotaibi, M. Arif, M. A. Alghamdi, S. Hussain, Starlikness associated with cosine hyperbolic function, Mathematics, 8 (2020), 1–16. https://doi.org/10.3390/math8071118
    [12] H. Tang, G. Murugusundaramoorthy, S. H. Li, L. N. Ma, Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function, AIMS Math., 7 (2022), 6365–6380. https://doi.org/10.3934/math.2022354 doi: 10.3934/math.2022354
    [13] R. R. London, Fekete-Szegő inequalities for close-to-convex functions, P. Am. Math. Soc., 117 (1993), 947–950. https://doi.org/10.2307/2159520 doi: 10.2307/2159520
    [14] M. Çağlar, H. Orhan, N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), 1165–1171. https://doi.org/10.2298/FIL1307165C doi: 10.2298/FIL1307165C
    [15] M. Arif, K. I. Noor, M. Raza, Hankel determinant problem of a subclass of analytic functions, J. Inequal. Appl., 2012 (2012), 1–7. https://doi.org/10.1186/1029-242X-2012-22 doi: 10.1186/1029-242X-2012-22
    [16] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., 11 (2017), 429–439. https://doi.org/10.7153/jmi-2017-11-36 doi: 10.7153/jmi-2017-11-36
    [17] N. E. Cho, V. Kumar, Initial coefficients and fourth Hankel determinant for certain analytic functions, Miskolc Math. Notes, 21 (2020), 763–779. https://doi.org/10.18514/MMN.2020.3083 doi: 10.18514/MMN.2020.3083
    [18] M. G. Khan, N. E. Cho, T. G. Shaba, B. Hhemad, W. K. Mashwani, Coefficient functional for a class of bounded turning functions related to modified sigmoid function, AIMS Math., 7 (2021), 3133–3149. https://doi.org/10.3934/math.2022173 doi: 10.3934/math.2022173
    [19] G. Murugusundaramoorthy, M. G. Khan, B. Ahmad, W. K. Mashwani, Coefficient functionals for a class of bounded turning functions connected to three leaf function, J. Math. Comput. Sci., 28 (2022), 213–223. https://doi.org/10.22436/jmcs.028.03.01 doi: 10.22436/jmcs.028.03.01
    [20] D. Mohamad, N. H. A. A. Wahid, N. N. M. Fauzi, Some properties of a new subclass of tilted star-like functions with respect to symmetric conjugate points, AIMS Math., 8 (2023), 1889–1900. https://doi.org/10.3934/math.2023097 doi: 10.3934/math.2023097
    [21] E. Rodemich, The fifth coefficient for bounded univalent functions with real coefficients, Adv. Math., 263 (2014), 468–512. https://doi.org/10.1016/j.aim.2014.06.012 doi: 10.1016/j.aim.2014.06.012
    [22] E. Haliloglu, On the Faber coefficients of functions univalent in an ellipse, T. Am. Math. Soc., 349 (1997), 2901–2916. https://doi.org/10.1090/S0002-9947-97-01721-2 doi: 10.1090/S0002-9947-97-01721-2
    [23] R. J. Libera, E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, P. Am. Math. Soc., 85 (1982), 225–230. https://doi.org/10.1090/S0002-9939-1982-0652447-5 doi: 10.1090/S0002-9939-1982-0652447-5
    [24] T. Panigrahi, B. B. Mishra, A. Naik, Coefficient bounds for the family of bounded turning functions associated with tan hyperbolic function, Palestine J. Math., 12 (2023), 620–634. https://doi.org/10.1007/s11253-023-02177-8 doi: 10.1007/s11253-023-02177-8
    [25] K. I. Noor, N. Khan, Q. Z. Ahmad, Coeffcient bounds for a subclass of multivalent functions of reciprocal order, AIMS Math., 2 (2017), 322–335. https://doi.org/10.3934/Math.2017.2.322 doi: 10.3934/Math.2017.2.322
    [26] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048 doi: 10.1016/j.aml.2011.03.048
    [27] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, P. Am. Math. Soc., 118 (1993), 189–196. https://doi.org/10.1090/S0002-9939-1993-1128729-7 doi: 10.1090/S0002-9939-1993-1128729-7
    [28] Y. Li, K. Vijaya, G. Murugusundaramoorthy, H. Tang, On new subclasses of bi-starlike functions with bounded boundary rotation, AIMS Math., 5 (2020), 3346–3356. https://doi.org/10.3934/math.2020215 doi: 10.3934/math.2020215
    [29] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, B. Belg. Math. Soc.-Sim., 21 (2014), 169–178. https://doi.org/10.36045/bbms/1394544302 doi: 10.36045/bbms/1394544302
    [30] D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, New York: Academic Press, 1980.
    [31] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applicationsin geometric function theory of complex analysis, Iran. J. Sci. Technol., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1189) PDF downloads(113) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog