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1. Introduction and definition
Let S denote the class of univalent functions which are analytic in the open unit disk D = {z € C :

|z| < 1} of the form

f@ =2+ @ (zeD). (1.1)
n=2

Let P represent a class of analytic functions within the unit disk D of the form
p@ =1+ 67 (zeD) (1.2)
n=1

and satisfy the condition of R(p(z)) > 0. It is easy to know from the conclusion of [1], for p(z) € P,
there exists a Schwarz function w(z), making

1 +w(z)

p(2) € P S p(z) = 1——W(Z)
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In 1976, Noonan and Thomas [2] defined the ¢ Hankel determinant for a function f € S of
form (1.1) as

a pyl Apg-1
ap1 apip -0 (2
lqu(j) = . . . . ,
pig-1 Apig ~°°  Qpy2g-2

where a; = 1,n > 1,g > 1. In particular, we have
Hy(f) = a3 — @,

Hz,z(f) = a4 — Clé,
Hs 1 (f) = a3(ara4 — a3) — as(ag — ara3) + as(az — a3)

and
Hy 1 (f) = a7H3 1 (f) — asd1 + asos — as03,

where
2
01 = asz(axas — azay) — as(as — azay) + agas — a;),

2
0> = as(azas — ay) — as(as — aas) + as(as — aras),
2 2
03 = as(azas — ay) — as(axas — azay) + as(ara4 — a3).

Next, we recall the definition of subordination. We assume that f; and f, are two analytic functions
in D. Then, we say that the function f; is subordinate to the function f,, as we write fi(z) < f»(z), for
all z € D. Then, there exists a Schwarz function w(z) with w(0) = 0 and |w(z)| < 1 to satisfy

fi@) = fL(w(2)).

Now, we consider the following class S *(g) as follows:

2f (2)
f(@)

where g is an analytic univalent function with positive real part in D, and g maps D onto a region
starlike with respect to g(0) = 1, g'(0) > 0, and is symmetric about the real axis. The class S*(g) was
introduced by Ma and Minda [3]. If we vary the function g on the right side of (1.3), we will obtain
different results. In recent years, many researchers have also conducted a lot of research on this and
obtained a series of conclusions. Some of them are as follows:

(1) For g = 2=, which was defined in [4].

(2) For g = V1 + z, it has been further studied in [5].

(3)Forg=1+ %z + %zz, it was introduced in [6] and further investigated in [7].

(4) For g = €%, it was defined and studied in [8].

(5) For g = z+ V1 + 2%, the class is denoted by S 7, and it was further studied in [9].

(6) For g = 1 + sinh™'z, the class S =871+ sinh™'z) was studied by Kumar and Arora [10].

(7) For g = coshz, the class S , = S*(g(z)) was introduced by Alotaibi et al. [11].

cosh

S (@ =1{feS: < 8@}, (1.3)
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The Fekete-Szego inequality is one of the inequalities for the coeflicients of univalent analytic
functions found by Fekete and Szegd. The Fekete-Szego inequality of various analytic functions has
been studied by many researchers in the last few decades, for example, Huo Tang defined certain class
of analytic functions related to the sine function (see [12])

f’(g)e(w)l-e <1+sin(Q); (fe€S,0<60<1)
f)
and investigated the upper bound of the second Hankel determinant and the Fekete-Szego inequality
for functions in this class. Many papers have been devoted to researching the Fekete-Szego inequality
for various sub-class functions (see [13,14]). Therefore, the study of the Fekete-Szego inequality for
different analytic functions is valuable and of great significance.

In recent years, many papers have been devoted to finding the upper bounds of Hankel determinants
for various sub-classes of analytic functions as well. For the basics and preliminaries, the readers are
advised to see the academic achievements in [15—18]. Guangadharan studied a class of bounded turning
functions related to the three leaf function in [19]. From this, it can be seen that the research on Hankel
determinants of various analytic functions has become popular. Therefore, it is an interesting and hot
topic to investigate the Hankel determinants for various classes of analytic functions. In addition, it is
worth mentioning that a class of star like functions associated with the modified sigmoid function was
defined by Goel and Kumar [20],

_Zf'(z)< 2
"F)  1tes

Apart from the above, the coefficient bounds for certain analytic functions have been studied by
many researchers, see [21-25]. Further, many star like functions have been defined and studied as
well, see [26-29]. Not long ago, another class of analytic functions associated with the modified
sigmoid function was defined and studied by Muhammad Ghaffar Khan [4],

SSG:{fGS }

Ry, ={feS:f@<

l+e b
It is well known that for each univalent function f € S, there is an inverse function f~'(w) which
can be defined in (lw| < ;7 > }T), where

f_l(W) =w- Cle2 + (2a§ - a3)w3 - (Sa; - 5a2a3 + a4)w4 + ...,

A function f € § is said to be bi-univalent in D if there exists a function g € § such that g(z) is a
univalent extension of f~! to D. Brannan [30] studied classes of bi-univalent functions and obtained
estimates for their initial coefficients. Many classes of bi-univalent funtions were introduced and
further studied in the past few years. Inspired by all the aforementioned works, in this paper we
investigate another certain class of analytic functions H(4, ¢), which are related to the modified sigmoid
function, and discuss the upper bound of the fourth-order Hankel determinant in special cases, here we
use another method to obtain improved results compared to [20]. And we also obtain the upper bound
of third-order Hankel determinant of its inverse function. Furthermore, we discuss the Fekete-Szeg6

inequality for functions in this class when 4 € [0,1] and ¥ = 5 fe,z. Finally, we estimate the upper
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bounds of the initial coefficients for functions in this class when A € [0, 1], ¥(0) = 1, and w'(O) > 0,

where its inverse function f~! also belongs to this class.
Definition 1.1. Assume that f € S, 0 < 1 < 1, (f (2)"™ and (é)%f((z_)z))’1 are analytic in D with
f (2 #£0, and f(z) # f(=2) for all z € D\{0}. Furthermore, (f (z))'=1I at z = 0, Y(2) is a univalent and

analytic function. Then, f(2) is said to be in the class H(A,y) if the following condition is satisfied:

221 (2)

A
Fo-fe) “YE@

(1= D(f @)™+ A

For convenience, we denote
H) = H(A,

1 +e )
Remark 1.1. For any A € [0, 1], we have that f(z) = z € H(A1) always holds.

2. Third Hankel determinant
Below we will evaluate bounds of the first six initial coefficients and non-sharp bound of the third

Hankel determinant for functions belonging to H(1).
Theorem 2.1. Let f € H(1) and be of form (1.1). Then,

1
lay| < T (2.1)
1
las| < T (2.2)
las| < 1 (2.3)
ay| = 8, .
1
las| < 3’ (2.4)
731
< — 2.5
lag| < 576" (2.5)
388937
< . .
1 < 920 (2.6)

The first four inequalities are sharp.

We need the following lemmas to prove the above theorem:

Lemma 2.1. [4] Let p € P, then |c,| < 2.

Lemma 2.2. [17] Let p € P, then for alln,m € N, if 0 < { < 1, there is |c,yyn — {cper| < 2. If <0 or
{>1, there is |Cipin — (| < 2127 - 1.

Lemma 2.3. [4] Let p € P, then

lac] — Beiey + yes| < 2lal + 2|8 — 2a] + 2la - B + v,

where a, B and 'y are real numbers.
Lemma 2.4. [4] Let o,B,y, and { satisfy the inequalities 0 <y < 1,0 < < 1, and

88(1 — PIL(yL = 2a)* + (Y(B +7y) — 1 + y(1 =)L - 2By)* < 4y*(1 — v)*B(1 - ).
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If p € P, then

3
Ia/c‘l‘ +IBC§ + 2ycic; - Eéc%cz —cy| £ 2.
Proof. If f € H(1), there exists a Schwarz function w(z) to satisfy

2f 0 2
f@ - f(=2)  1+e@’

Also, if p € P, it can be written in terms of the Schwarz function w(z) as

1
PR =l+ciz+ed+e0 + = +W(Z),
1 -w(2)
or equivalently,
p-1 1 1 1, , 1,5 1 1 3
= =—c1z2+ (50—~ +(-c]— = + = + .- 2.7
(2) PrEy 512 (262 461)1 (861 S€162 263)z (2.7)
Now, we set
22f (2) T I 2
—————— =14+ b2+ b7 +b37 + b7+ bsz" + bz’ + -+ = ———. 2.8
f(Z) _ f(_Z) 1 2 3 4 5 6 1 + e_w(z) ( )
In addition,
2zf'(z) 1+ 2az+ a3 + Sasz* + 6agz’ + Ta28 + - - (2.9)
f@—-f(=2) L+ a3 +ast +ar2S + - - ' ’
Using (2.8) and (2.9), we can get
bl = 2612, (210)
b, = 2as, (2.11)
b3 = 4614 - 2a2a3, (212)
by = 4as — 2a3, (2.13)
b5 = 6616 —4dasay + 261261% - 2asas, (214)
b = 6a; — 4azas + 2a3 — 2azas. (2.15)

Substituting (2.7) into the right side of (2.8), by simplifying, using (2.10)—(2.15), and comparing the
coeflicients on both sides of the equation, we can get

1
w=ge, (2.16)
le o
_lo 4 2.1
=53 @17
11 7 c
“= 3G paety) -
11 9 3
as = g (61 ~ Tge1e F Q1 T ga— ), 19
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1 2 1 1
ag = 81?5 + 5(13614 — §a2a§ + §(12(15, (220)

1 a3(3as — a3)  asas
a; = —

6T T3 3

(2.21)

where

b 1 ( =5¢% + 122¢7cy — 288cic; — 432¢ic; + 528ctcs + 1056¢ ¢ )
5= ,

3072 —768cic5 + 1766‘; —768cc4 — 3840% + 768cq

1

bs = 5160960

—1451520c%czc3 + 887040C%C5 - 483840c1c§ + 1774080c¢ ¢4+

[ -2537¢] - 50400cfcz +204960c}cs + 4099206‘?6% - 483840040?
887040c 3 — 1290240¢;c6 + 887040c5¢3 — 1290240c,¢5 — 1290240¢3¢4 + 1290240¢,

Applying Lemma 2.1, we have

1
las| < Z

The above inequality is sharp with extremal function f(z) = fo n 2_, dt.

1
a —cz——c <
las| = 5| 1< 7

The above inequality is sharp for the function p(z) = (1 + z2)/(1 — 2%).
Applying Lemma 2.3, we have

@l < T2l + 20 — [+ 2l — 1] =
a — — - — ———=+—-]==.
14" 32 12 24 32 4 8
The above inequality is sharp with extremal function f(z) = foz ﬁdl
Applying Lemma 2.4, we have
1 9 3 1
las| = |16 6 cf - 16C €3+ cics + 8C2—C4)| 3
The above inequality is sharp for the function p(z) = (1 +z*)/(1 — z*).
Applying the triangle inequality, we have
L < 1 122lc1*les — mc2| + 1056|cq]|csllca — | + 528|c1Ples — —c2|
6~ 18432 +768]cs — cics] + 768lcallcs — ﬁ 3| + 384|cs?
By applying Lemmas 2.1 and 2.2, we have
355
bl < —
15051 = 258"
and then applying the triangle inequality and (2.1)—(2.4), we have
20504~ 30268+ Sasa] < Sasllad + Shaslasl + Slaalas] < =
—asa ara’ aa asllag] + =lazlla —las|la —,
33304 = 33 + 3205 sliagl + slasflas zlallasl < 755
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and from (2.20) we can obtain
355 7 731

a6l < Se8 * 192 = 576"

By applying triangle inequality, we have

1 20965760|c;[*|c3 — lg§C1C2| +483840|c ]Plcy — ﬂ62| + 1290240|c||ce — C165|
|— 6| e — +1774080|C1||02||C4 - C1€3| + 887040|Cz| |C3 - C1€2| + 129024O|C7 — 02C5|

30965760 +1290240]c3]Jcs — cwﬂ+25ﬂkm

Then, from (2.2) and Lemmas 2.1, 2.2, and 2.4, we have

1 381377
|=be| < ,
6% = 241920
il /T WAVE VNG VS L S
_— = C C —C .
3 24Pl Ty Tas T gae mal= g
From (2.2) and (2.4), we have
|a3a5| 1
=96

Then, applying the triangle inequality and (2.21), we can get
381377 1 1 388937

la7] < 241920 48 96 241920

This completes our proof.
Theorem 2.2. If f of the form (1.1) belongs to H(1), then

1
7

las — azl

The result is sharp for the function p(z) = (1 +z2)/(1 = Z%).
Proof. Using (2.16), (2.17), and Lemma 2.2, we have

5
2 2
las — a3| = Zlea — gl <

8 8
Theorem 2.3. If f of the form (1.1) belongs to H(1), then

1
e

1
laas — as < =
8

The result is sharp with the extremal function f(z) = foz ﬁdt.
Proof. Using (2.16)—(2.18), we can get

| = |6 = —ciey + el
A Tl = Rgg 1 T 12812 T 16
Applying Lemma 2.3,
7 . 9 1 9 7 7 9 1 1
—C - —= + <2 +2 - +2 +—|==.
3821 182 T 1l = |384| 28 192/ "85 18 T 16 T ®
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Theorem 2.4. If f of the form (1.1) belongs to H(1), then
|612(14 - agl < E

The result is sharp with the extremal function f(z) = foz ﬁdt.
Proof. Using (2.16)—(2.18), we can get

|aa—az|—i|—l 9cc +1cc—c2
M mGI= Gl T T e T yaa Al
Now, in order to get the desired bound, we shall prove that
1 4, 1
| — gcl 16C 1C2 + 20103 - c2| <4. (2.22)

Next we will use the following Lemma:
Lemma 2.5. [17] Let p € P. Then, there exists some x, y with |x| < 1,|y| < 1 such that

2c; = 2+ x(4 - ),

deyz = c? +2cix(4 — c%) -(4- c%)cl)c2 +2(4 - c%)(l - lez)y.

Using the invariant property under rotation, we can assume that ¢ = ¢; € [0, 2], and then from
Lemma 2.5, substituting the expression for ¢, ¢;3 and simplifying, we can obtain

1
4

6 16
If ¢ = 0, there is

1 1 1 1 1 1
—clcy + €163 = 3= —%c + 3¢ (4 - cHx - 1(4 —ch)(4 - §c2)x2 + ZC(4 — A1 = [xH)y.

1 |
| — gcjL 16C 1C2 + c1C3 - c2| 4|x* < 4.

If ¢ = 2, there is

| 1 ‘. 9 N 1 2

- —=c c c+ =cic3—c¢
61 T eIy TalT
Next, we will discuss the case of ¢ € (0, 2). At this time,
—lc4 = 1C2 + lclcg 2 = lc(4 - cz)[px2 +gx+t+(1- |x|2)y],
6 ' 16" 4

where
c* -8 o

¢ t
8 244 -2

and then we denote 1
I= - Apx* +qx + 1t + (1 =[xyl

where p < 0,g > 0, and ¢ < 0 always holds due to the fact that ¢ € (0,2). Then, by using the triangle
inequality, we have

1 1
1< 3¢ =)= Ix + |pll +Igill + 1) = 3¢ = A)=(p+ DI’ + gl =1 + 11
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Since —— ) +1) < 0 always holds, we can obtain

|I|<—c(4—c)( prqg—1) = 45 4—£cz+4:f(c).

8 8

By computation, it can be revealed that

f(e) <max{f(0), f(2)} =
In summary, |/| < 4, that is, (2.22) holds, which evidently yields

1 1
| — = 4 cc2+ clc3—c2|<4

6! 16 2

This completes the proof.
Theorem 2.5. If f of the form (1.1) belongs to H(1), then

1
|H3, ()] < 16

Proof.

Hs,(f) = as(aray — a3) — as(as — araz) + as(az — aj).

By using the triangle inequality, we have

2 2
|[H31 ()] < lasllazas — a3 + lasllas — azas| + las|las — a3|.

According to Theorem 2.1, we have
1
las| < 7 lag| < 3 las| < g

According to Theorems 2.2-2.4, we have

1
2

aray — ax| < —
|24 3| 169

oo

Therefore,

1
|H3,(f)] < 16

3. Fourth Hankel determinant

lay — ara3] < =, laz — a3 <

1

.[;

Below we will evaluate the non-sharp bound of the fourth determinant for functions belonging

to H(1).
Theorem 3.1. If f of the form (1.1) belongs to H(1), then

lacas — azaq| < —

16°
Proof. Using (2.16)—(2.19), we can get
laras — azay| = | ! o — ! e czc+ c1c2 +
205 T BN = Te1441 7 307212 7 25619 T 256712

AIMS Mathematics
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Then, by applying the triangle inequality, we have

1 02 1 cic 1 cic
3 102 1C3
laras — azay| < |C (c2 = —)| + —<leales — N+ —<lci(cs —

= 3072 128 2 7" 128 =k

We denote |cq| = ¢, and from Lemmas 2.1 and 2.2 we can obtain

2

3 €] <3 1, c1C2 C1C3
_ 1 7 _ — _ _ae _ _ae
lcy(ca 2)|_C( ¢ ) 128| ca(c3 )|_32 128| ci(cs )|_64
Thus,
1
|laras — azay) < 3072 Q2 - —) et 3 =00,
, 5¢4 c? 1
G = - —+—2>0 0,2].
©=-Faatspte =0 <<l
Therefore,

G(l)<G2)=—

This completes the proof.
Theorem 3.2. If f of the form (1.1) belongs to H(1), then

1
las — aray| < =.

oo

Proof. By using (2.16), (2.18), and (2.19), we have

L B, 9 3, |
—|—C CC ci1C C — Cy4].
161271 64 172 g g2

las — aras| =

By applying Lemma 2.4, we can get the sharp result for the function p(z) = (1 +z*)/(1 — z*).
Theorem 3.3. If f of the form (1.1) belongs to H(1), then

| | 689 + 1443
aszdds — d e E—
TR T 9016
Proof. Using (2.17)—(2.19), we can obtain
5 19 1 47 1 1 3 1 1
_2 = 6_ 4o By 2.2 2. _ A S 2
lasas =] = |3 1 12288 121 3831 1638412 256519 " 1024 24 1024 T 128 2%~ 256!
By applying the triangle inequality, we get
lasas—a?| < > leg |+ ! |cal|76¢] = 141c3 e, +48¢ c3+144c3)+ | lcslle] = =3+ —=callea—=c3.
3T = 36864 T 491522 2 13 aF3gg sl — 3 Gl pgladlica= 34

In order to get the desired bound, we shall prove that
176¢t — 141c3c, + 48cic3 + 144c3| < 856.

AIMS Mathematics Volume 9, Issue 3, 6445-6467.
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Using the invariant property under rotation, we can assume that ¢ = ¢; € [0,2], and then from
Lemma 2.5, substituting the expression for ¢;, ¢3 and simplifying, we have

107 , 51
76¢] — 141c3c, +48cic3 + 144c% = 7(:4 + 7(:2(4 — D) x+48(4 =B = cH)x? +24c(d - ) (1 = |xH)y.
Ifc=0,

176¢| — 141cic, + 48¢cc3 + 144c¢3| = 576. (3.1
Ifc =2,

176¢} — 141cic, + 48cic3 + 144¢5| = 856. (3.2)

If c # 0 and ¢ # 2, we have
76¢] — 141ctcy + 48¢cics + 144c5 = 24c(4 — A)[p + gx + tx* + (1 = [x[P)y],

where
_ 107 _17c t_6—202
P=a-2y 1576 T ¢

p,q > 0 always holds due to the fact that ¢ € (0, 2). Then, by using the triangle inequality, we have

|76¢} — 141cicy + 48cic3 + 144c¢3| < 24c(4 — (1 = x> + p + glx| + [fllx?).

We denote
1= 24¢d — A = 3 + p + qlxd + [P

For suitability, we divide the calculation in five cases:
Case (I). r < 0 if and only if V3 = ¢; < ¢ < 2. At this time,

I =24c(4 - A1 +Dx* + glx| + p + 1],

_4

16+8 v247
2(1+1) 81

and when ¢; £ ¢ < ¢y, there is < 1, where ¢ = . Then, we have

401+ p - 107¢* 867 , 2
UrDP =4 4 ogeq— 2y = 1€ 1=re

+ c
—4(1 +1) 2 128 3+ 2¢

[ < 24c(4 - ¢c?) +24c(4 - ) = fio).

By computation, it can be revealed that
fi(c) < 856, c € [cy,c). 3.3)

Case (I]). For ¢ € [c,, 2), there is ﬁ > 1, and we then have

[ <24c(d - (p+q—1) = =20 +438¢> — 576 = fo(c).

By computation, we have
f(c) <856, c€[ca,2). (3.4)

—16+8 V145
47

Case (I1]). Forcy >c¢c>c¢3 = , we have

[ =24c¢(4 = A - DIxf + glxl + p + 11,

AIMS Mathematics Volume 9, Issue 3, 6445-6467.
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where =~— < 1, and we then obtain
3 107¢* 867 42—

2(1-9
4¢1-Dp-¢° 2 ¢ 2
=Pl 44— ) = - 24c(4— ) = f(0).

77T T T A T T A

Now, computation reveals that

[ <24c(4 =P

f3(c) < 856, ¢ € (c3,c1). 3.5)

49

a7 > 1. We can get

Case (IV). For ¢3 > ¢ > ¢4, where ¢4 = %, there is
[ <24c(4 - )t + p +q) = 76¢* = 234¢* + 576 = fu(c).

A computation shows that
fa(c) < 856, c € (cy4, c3]. 3.6)

Case (V). For the case of ¢ € (0, ¢4], we have
1 =24c(4 - A - DI + glxl + p + 11,
where t — 1 > 0 holds for ¢ € (0, %). Thus, we have
I < max{24c(4 — A (p + 1),24c(4 - A)(p + g + D},

or, equivalently,
4

I < max{—— + 24¢(4 — ¢?),76¢* — 234¢* + 576).
Now, we denote
gi(c) = +24c(4 —c¢%), gi(c) =76¢" —234c” + 576
g,(c) = 314¢% = 72¢* + 96,
" 471c¢
= 144 ~-1).
g(c) (=5 -1

g’l(c) attains its minimum at ¢y = 47721, gll(co) > 0, which evidently yields that g’l(c) > 0 holds for
c € (0, 2). Therefore, g(c) < gl(%) = 333.84375. On the other hand,
3
g2(c) < maX{gz(O),gz(E)} = 576.

Thus,
1 <576, c€(0,cy]. (3.7)

From (3.11)-(3.17), we conclude that I < 856, which implies
176¢t — 141c%c, + 48cic3 + 144c3| < 856. (3.8)

Next, we will use the following lemma:
Lemma 3.1. Let p(z) = 1 + ¢1z2 + 2% + ¢32° + - - - € P. Then, for any real number y,

4
2u - 4 (u < §)’

u 4
2 —_— = .
i P (3<u)

3
lucs — ¢l <

AIMS Mathematics Volume 9, Issue 3, 6445-6467.
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By Lemmas 2.1, 2.2, and 3.1, we can obtain

5 4 5 107

|lcal|76¢T — 141¢ics + 48¢ic3 + 144c3| <

1 3 V3 1 1

3 2 1
ﬁkﬁ”cl - §C3| < o ﬁ|c4||cz - 501| < 3
From (3.9) and (3.10), we have

, 689+ 14443
aszas — ay| < —9216

This completes our proof.
Theorem 3.4. If f of the form (1.1) belongs to H(1), then

215139562 343
|Hy 1 (f)] < + .
371589120 ' 4096

Proof. We can write Hy 1 (f) as

Hy (f) = arH3,1(f) — agd1 + aso, — asd3,

where

81 = as(apas — asas) — as(as — aas) + aglas — a3),

6> = az(asas — az) — as(as — aras) + a(as — axas),

83 = as(azas — a3) — as(ayas — azay) + ag(aray — a3).

By applying Theorems 2.1-2.5, 3.1-3.3, and the triangle inequality, we have
|Ha 1 (P < lagllHs 1 ()] + lacllor | + lasloa] + |aalldsl,

388937 y 1 388937

H;,| < ~ 3870720
lasl 3,1|—241920 16 3870720

803
< b
— 2304

2
01| < lasllazas — azas| + |asllas — aras| + |agllas — a5

2371 3
62| < lasllasas — a3) + lasllas — axas| + lagllas — azas] < 12288 + %,

2371 + 483

163] < lagllazas — a3l + |asllazas — azaq| + lagllaras — a3) <
4 3 24576

Thus, from (3.11)—(3.15), we obtain

215139562 343
< .
Ha1 (Ol < 377589120 T 2096

< —, <—.
36864 '~ 576" 49152 3072

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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4. The bound of initial coefficients and third Hankel determinant for 1!

Theorem 4.1. If the function f € H(1) given by (1.1) and f~'(w) = w + Yoo, d,w" is the analytic
continuation to D of the inverse function of f with |w| < ry, where ry > i is the radius of the Koebe
domain, then

1
|d>| < T (4.1)
1
|ds| < T (4.2)
65
dy| £ —, 4.3
|dal 384 (4.3)
167
ds| < —. 4.4
|ds| < 756 (4.4)
The first three inequalities are sharp.
Proof. If
Flomy=w+ > dw"
n=2
is the inverse function of f, it can be seen that
U@ = (@) =z
Equivalently,
D d+ ) dowtY =z (di=1). 4.5)
n=1 =2
By comparing the coeflicients on both sides of (4.5), we can obtain
dr = —ay, 4.6)
d3 = 261% —das, (47)
dy = —(5a3 — Sazaz + ay), (4.8)
ds = 14a; — 21a3a; + 6azay + 3d3 — as. (4.9)
Applying Lemmas 2.1 and 2.2, (2.16), and (2.17), we have
1 1
|| = laa| = |§C1| <7
s = xles = 23 <
NI gy
Applying Lemma 2.3 and (2.16)—(2.18), we have
|d|—|91 ;17 +1 <2 I+ |17 91| |91 17 1|_65
47115361 T 12871 16c3 1536 128~ 768 1536 128 ' 16 384"
| = | 21 N 7 L2 9 E 1 |
; 2048 €1~ TggCicr + g1+ g~ gk
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By applying the triangle inequality, we can get

97 4 21, 1 9 1

< |/
|d5|_|2048€1 128 e+ —cic3| + |5

64 128 ¢~ 765!

Using Lemmas 2.1 and 2.3, we have

7 o 2 T 9T 3 2 T
308861 ~ 12512 + gza193l = lelllzgzect = e + ol <

Using Lemma 2.2, we obtain

9 1 1 9
|—c§ — —c4|l = —lca — —C%| < —.

16 16 8 32

Therefore,
127 5 167

|ds| < ﬁ + 3—2 = ﬁ
This completes the proof.
Theorem 4.2. If the function f € H(1) given by (1.1) and f~'(w) = w + 32, d,w" is the analytic
continuation to D of the inverse function of f with |\w| < ry, where ry > i is the radius of the Koebe

domain, then

34171
Hy (fH < .
|H31(f )l < 147456
Proof. From Theorem 3.2, we have
1
\ds — d5| = a3 — a3] < 7 (4.10)
Applying (4.6)—(4.8) and (2.16)—(2.18),
73 15 1
\dads — dul = 33 — dazas + ay| = |ﬁC? ~ 112 + EC3|
Using Lemma 2.3,
73 15 1 59
drds — d +2 +2 + —|=—. 4.11
ldods — dul < |1536| ' 768| 1536 " 128 T 16~ 384 “4.11)
Applying (4.6)—(4.8) and (2.16)—(2.18),
1 17 7 1
|drds — d%l = Iaé - a§a3 + aas — a%l = e @c‘f + c% - Rc?cz - §C163|.
We denote |c;| = ¢ € [0,2],]|x] = ¢ € [0, 1], and referring to Lemma 2.5, we have
2414 -¢? 4 - 4—cHer G-AHA-7
e SO o O G et G Gt Lt )
2 4 2 4 2
Using the triangle inequality, we have
7, 5 71, 1 131 (4—c2)c (c+2)(c+4)(c-2)? ) 31c¢*(4 - ¢?)
P R + + t=F(c,t).
o6+ fghice = zaal < 1g5¢ 4 8 32 0
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OF  (c+2)(c+4)(c— 2)?

31c*(4 - 2
L 3eE-e)

— = t 0.
ot 4 »
Therefore,
F(c,H) < F(c,1) = 31 44 19 2+ 4 =G(c)
c,t) < F(c,1) = 192c 8C = G(o),
, 19 31 ,
= — e — > 0.
G (c) 4c(l 228c)_O
This leads to 131
Glc)<GR)= —,
() <G(2) B
131 1 131
dody —d3| < —  — = —. 4.12
dods =5 < 75 4 = 768 (+12)
Applying (4.2)—(4.4), (4.10)—(4.12), and the triangle inequality, we have
) ) ) ) 34171
a1 ()] = ds(dads=d3)=ds(dy—dads)+ds(ds=d3)| < Idslldady=d3|+Idallds—dadsldsllds—d3| < =,
which completes the proof.
5. The bound of coefficients and Fekete-Szego inequality for f € H(1)
Theorem 5.1. If f € H(A) and is of the form (1.1), then
pg—
Ry Ey
<
Iy Y
v[3(1 = 2)? +2221-2(1 = A -
B V2 ’
16[3(1 — )% + 222][(1 — )2 + 2] !
1
2
a3—va2|S 2[3(1_/1)24_2/12], h<v<t, 5.1
2(1 = DA = v[3(1 = 1) + 227] <
B S ’
16[3(1 — )% + 222][(1 — )2 + 22]? 2
where
. 8[(1 -+ 2P +22(1 - Q) . 2A(1 = ) — 8[(1 — 1) + 222
b 3(1 = A)2 +222 R 3(1 = )2+ 222
The result is sharp for the function p(z) = (1 + z2)/(1 — Z%).
Proof.
f,(z) =1+ 2a,z+ 3a3z2 + 4a423 + 5a5z4 + -,
A =D @)™ =1 =D +2(1 = D?arz + 3(1 - D?az — 2(1 — )*AdD)? + - - -, (5.2)
ZZf,(Z) 2 3
————— =1+2az+2 + (4ay -2 +-e
Q@ - f(=2) arz aszg (4ay aa3)Z
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o
A(f(z)zf—](f()_z))l = 1+ 2 a7+ 2A%a3 - 222(1 = Da3)z” + - - -. (5.3)
In addition,
_ PR 2@ 2 - a 2_0_% 24 ...
(1= @) "+ ﬂ(f(z) “f) " Trero I+ 72+ (5 2 )2+ (5.4)
where -1 1 1 1 1 1
w(z) = ]Ijé) =5t (Ecz - ZC%)ZZ + (gc? — et §c3)z3 +n

pR)=1+ciz+c?+c+---€P.

Substituting (5.2) and (5.3) into (5.4) and comparing the coefficients on both sides of (5.4), we can

obtain
(&1

[2(1 = )+ 22%)a, = > (5.5)
c 2
[B(1 = )% + 22%as — [2(1 = D)*A + 22%(1 = D]a3 = Zz —~ gl (5.6)
From (5.5) and (5.6), we have
(4]
- 5.7
- T 7
1
= A 5.8
B30 a2 (5-8)
where (1- DA {
A= 3P+ 2
- eer 897G
Hence,
03] = 1 - (g - LD
TTABA -2 +222] 7 2 8[(1 =)+ 2"
and, since . - - DA
2= — — 1| = _ 1 1€]0,1],
PG sa— e T aa— e < A0
we can apply Lemma 2.2 to get
< .
sl < o a0 6
From (5.7) and (5.8), we can get
1 V[3(1 = )% + 222 -2 1
las — vad] = O s S et e )

4[3(1 — )% +247] 16[(1 —)?+ 221> 8[(1-)*+ 22> 2

Applying Lemma 2.2, we can obtain

1 a |v[3(1 — D2 +222]-2(1 - DA
axtt 8[(1 = )2 + 2]

1}.

2
- <
s =val < S T o

Then, we get (5.1), which completes the proof.
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Corollary 5.1. If f € H(3) and is of the form (1.1), then

as —vaj| < 6 <v<2, (5.9

6. Coefficient estimates

Now, we assume that ¢/(z) is an analytic and univalent function with positive real part in D, and y/(z)
satisfies the condition of ¥(0) = 1 and ' (0) > 0. It is easy to know that ¢(z) has a series expansion of

the form
Y@ =1+Az+ A2 + A2+ -

Next, we are going to estimate the upper bounds of the initial coefficients for f, where f and f~!
belong to H(A,¥). Since ¢ (0) > 0, we have A; > 0.
Remark 6.1. For y(z) = V1 +2z f(z) = z, we have that f(z) and f~'(z) belong to H(A,y) always
holds.
Theorem 6.1. If f, g belong to H(A, ) and are of the form (1.1), where g is the inverse function of f,

then we have
\aa| < min A A1+|A2—A1|}
2= R+ A- 7 N 72 -81+3 "

A A7 Ai+1A; - Al
+ )
22+3(1-2)2% 41 =22+ 22> 722-81+3
Proof. Since f, g € H(A,¥), there exists two analytic functions u,v : D — D, where u(0) = v(0) = 0,
such that

).

las| < min{

- 2z (2)
1-4 M A=) = , 6.1
(=0 @) + A = v (6.1)
: 2z¢
(1= @)™+ J(L@)A = Y(v(2)). (6.2)
8(2) — g(=z2)
Let us define the functions p and g by
1
Md=l+pm+mf+“':1tﬁ2,
1
q@)=1+qiz+ @+ = 1218
Or, equivalently,
_p@-L L P
M(Z)_p(z)+l =Szt (G- T+
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q@-1 1 @ 4,
v(z) = FErSi 2(]12"'(2 4)z +
In addition,
1 1 1, 1 9\ 2
Y(u(z)) =1+ zAipiz+ (Ai(zp2 — —p)) + -Ap)z + -+, (6.3)
2 2 4 4
1 1 1, 1 2\ 2
Yy(v(z) =1+ §A1(I1Z + (AI(E(IZ - qu) + ZAqu)Z +oeee (6.4)
From (5.2), (5.3), (6.1), and (6.3), we have
1
202+ (1 - )?)ay = EA1 Pi, (6.5)
2 2 2 1 1, 1 2
[3(1 = )" +2A%]a; — 2A(1 — /1)612 = A](Epz - Zpl) + ZAzpl. (6.6)

Since
8@) =z—a + (a3 - a3)2’ — (5a3 — Sazaz + a)z’ + - - -,

we can obtain

, _ 278 (z
(1-2)(g (2))! AM(g(Z)f—;()_Z))* = 1-2[(1=-)*+2]arz+[(3(1-2)*+2%)(2a5—a3)-2A(1 - Va5 17> —-.
(6.7)
By using (6.2), (6.4), and (6.7), we have
2, 32 1
— 2[(1 — /l) +A ]az = EAlql, (68)
2 2101 2 2 1 1, 1 2
[3(1 = )" +227]12a; — a3) = 24(1 = Da; = Al(iqz - qu) + Zqul. (6.9)
From (6.5) and (6.8), we can get
P1 =41, (6.10)
and I
2= Ai(py + q7) 6.11)
2322 + (1= )22 '
Since |p;| < 2,|q:] < 2(i € N*), we obtain
Ay
< . A2
ool < ST 612)
By adding (6.6) to (6.9), we can get
2A41(pr + @) + (As — A (p? + ¢
a% _ 1(p2 + q2) + (A2 1)(171 611). 6.13)

8(742 - 81+3)

Since |p;| <2 and |q;| <2 (i € NT), we can get

A +1A; - Ayl
< . 6.14
el <\ T e 8173 6.14)
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From (6.12) and (6.14), we can obtain the conclusion

\as| < min| Ay A1+|A2—A1|}
2= 2+ - 1 N 72 —81+3 "

By subtracting (6.6) from (6.9) and using (6.10), we have

Ail(p2 — q2) pE
422 +3(1 -2 F

Using (6.10) and (6.11) in (6.15), we can obtain

_ Ai(pr—q2) Alp;
4[3(1 = D)2 +222]  16[(1 — )? + 212)*°

as =

as

Therefore,

Ay . Al
224+ 3(1 =22 4[(1 = )2 + 2%
On the other hand, by using (6.10) and (6.13) in (6.15), we can obtain

las| <

_ A(pr—q2) A(p2 + q2) + (A2 = A)p}
CA[3(1 - A2 +242]  4[3(1 -2 +222]-8A(1 - )’

as

or, equivalently,

1 1 1 1
_ Arp 2(4(5/12—6/l+3) + 4(7/12—8/l+3)) + A1q2(4(7/l2—8/l+3) - 4(5/12—6/l+3))
as = (Ar—A)p?
H(TA2=8A+3)
Using the triangle inequality and Lemma 2.2, we can obtain
Ay N |A; — Ay
TA2—-81+3 TA2-81+3

las| <

From (6.16) and (6.17), we have

A A3 A+ 1Ay — Ay

B30 A TR —81+3 )

las| < min{

which completes the proof.
Corollary 6.1. If f satisfies the condition of Theorem 6.1 and we let y(z) = 1 + %Z + %zz, then

2 2
o /
ol < mint S A e NI =81+ 3"

4 N 4 2 |
322 +3(1 =221 9[(1 -2+ 22" 722-81+3"
Corollary 6.2. If f satisfies the condition of Theorem 6.1 and we let f € H(0, ), then

las| < min{

A A +A, — A
ol < minl 5, %},

A2 _
las| < min{‘ﬁ 4t AL+ 1A — Al

347 3 )

(6.15)

(6.16)

(6.17)
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Let f € H(1,¥), then
A A +1]A, — A
aa] < min 21, (At 12— Ady

2 2

. A1 A% A1 +|A2—A1|
< —_—t Y — .
las| < min{ >t > }

7. Conclusions

In the present work, we defined new subclasses of analytic functions associated with the modified
sigmoid function. Then, we mainly get upper bounds of the third-order Hankel determinant and fourth-
order Hankel determinant in certain conditions. We also get the upper bound of the third-order Hankel
determinant of its inverse function in the specific conditions mentioned above. Next, we investigated
the upper bound of the Fekete-Szego inequality for the analytic functions in the class H(A). Finally,
we estimated the upper bounds of the initial coefficients for the analytic functions in the class H(4, ¢),
where f~!(z) also belongs to H(A, ). The purpose of our study is to stimulate the interest of scholars
in the field and to further stimulate their research in this kind of subject. In fact, this kind of problem
plays a very important role in many other problems of mathematical analysis.

We will further investigate the upper bounds of the third, fourth, and fifth-order Hankel determinants
of functions belonging to H(A) or H(A,¥) (0 < A < 1). We can also research the upper bounds of the
third or fourth Hankel determinant of a class of functions defined in [12]. Recently, the problems
of the quantum calculus happens to provide another popular and interesting direction for researchers
in complex analysis, which is evidenced by the recently-published review article by Srivastava [31].
Hence, the quantum extension of the results shown in this paper is quite worthwhile to further
research. Apart from the above, we are motivated to explore how to get the upper bound of the Hankel
determinant of certain analytic functions by other methods, from which we may get more precise or
sharp upper bounds.
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