Research article

A novel iterative scheme for solving delay differential equations and third order boundary value problems via Green's functions

  • Received: 29 November 2023 Revised: 21 January 2024 Accepted: 30 January 2024 Published: 05 February 2024
  • MSC : 34A08, 47J25, 47J26

  • In this paper, we constructed a novel fixed point iterative scheme called the Modified-JK iterative scheme. This iteration process is a modification of the JK iterative scheme. Our scheme converged weakly to the fixed point of a nonexpansive mapping and strongly to the fixed point of a mapping satisfying condition (E). We provided some examples to show that the new scheme converges faster than some existing iterations. Stability and data dependence results were proved for this iteration process. To substantiate our results, we applied our results to solving delay differential equations. Furthermore, the newly introduced scheme was applied in approximating the solution of a class of third order boundary value problems (BVPs) by embedding Green's functions. Moreover, some numerical examples were presented to support the application of our results to BVPs via Green's function. Our results extended and generalized other existing results in literature.

    Citation: Godwin Amechi Okeke, Akanimo Victor Udo, Rubayyi T. Alqahtani, Melike Kaplan, W. Eltayeb Ahmed. A novel iterative scheme for solving delay differential equations and third order boundary value problems via Green's functions[J]. AIMS Mathematics, 2024, 9(3): 6468-6498. doi: 10.3934/math.2024315

    Related Papers:

  • In this paper, we constructed a novel fixed point iterative scheme called the Modified-JK iterative scheme. This iteration process is a modification of the JK iterative scheme. Our scheme converged weakly to the fixed point of a nonexpansive mapping and strongly to the fixed point of a mapping satisfying condition (E). We provided some examples to show that the new scheme converges faster than some existing iterations. Stability and data dependence results were proved for this iteration process. To substantiate our results, we applied our results to solving delay differential equations. Furthermore, the newly introduced scheme was applied in approximating the solution of a class of third order boundary value problems (BVPs) by embedding Green's functions. Moreover, some numerical examples were presented to support the application of our results to BVPs via Green's function. Our results extended and generalized other existing results in literature.



    加载中


    [1] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. http://dx.doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023
    [2] J. García-Falset, E. Llorens-Fuster, T. Suzuki, Fixed point theory for a class of generalized nonexpansive mapping, J. Math. Anal. Appl., 375 (2011), 185–195, http://dx.doi.org/10.1016/j.jmaa.2010.08.069 doi: 10.1016/j.jmaa.2010.08.069
    [3] E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pure. Appl., 6 (1890), 145–210.
    [4] W. Mann, Mean value method in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. http://dx.doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
    [5] G. Okeke, A. Udo, R. Alqahtani, N. Alharthi, A faster iterative scheme for solving nonlinear fractional differential equation of the Caputo type, AIMS Mathematics, 8 (2023), 28488–28516. http://dx.doi.org/10.3934/math.20231458 doi: 10.3934/math.20231458
    [6] F. Gürsoy, V. Karakaya, A Picard-S hybrid type iteration method for solving a differential equation with retarded argument, arXiv: 1403.2546.
    [7] R. Agarwal, D. O'Regan, D. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex A., 8 (2007), 61–79.
    [8] G. Okeke, Convergence of the Picard-Ishikawa hybrid iterative process with applications, Afr. Mat., 30 (2019), 817–835. http://dx.doi.org/10.1007/s13370-019-00686-z doi: 10.1007/s13370-019-00686-z
    [9] G. Okeke, C. Ugwuogor, Iterative construction of the fixed point of Suzuki's generalized nonexpansive mappings in Banach spaces, Fixed Point Theor., 23 (2022), 633–652. http://dx.doi.org/10.24193/fpt-ro.2022.2.13 doi: 10.24193/fpt-ro.2022.2.13
    [10] G. Okeke, A. Ofem, A novel iterative scheme for solving delay differential equations and nonlinear integral equations in Banach spaces, Math. Method. Appl. Sci., 45 (2022), 5111–5134. http://dx.doi.org/10.1002/mma.8095 doi: 10.1002/mma.8095
    [11] G. Okeke, A. Ofem, H. Işik, A faster iterative method for solving nonlinear third-order BVPs based on Green's function, Bound. Value Probl., 2022 (2022), 103. http://dx.doi.org/10.1186/s13661-022-01686-y doi: 10.1186/s13661-022-01686-y
    [12] J. Ahmad, H. Işik, F. Ali, K. Ullah, E. Ameer, M. Arshad, On the JK iterative process in Banach spaces, J. Funct. Space., 2021 (2021), 2500421. http://dx.doi.org/10.1155/2021/2500421 doi: 10.1155/2021/2500421
    [13] M. Noor, New approximation scheme for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. http://dx.doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
    [14] R. Chugh, V. Kumar, S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, American Journal of Computational Mathematics, 2 (2012), 345–357. http://dx.doi.org/10.4236/ajcm.2012.24048 doi: 10.4236/ajcm.2012.24048
    [15] K. Goebel, W. Kirk, Topics in metric fixed theory, Cambridge: Cambridge University Press, 1990. http://dx.doi.org/10.1017/CBO9780511526152
    [16] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mapping, Bull. Amer. Math. Soc., 73 (1967), 591–597. http://dx.doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0
    [17] Ş. Şultuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl., 2008 (2008), 242916. http://dx.doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916
    [18] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43 (1991), 153–159. http://dx.doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884
    [19] V. Berinde, On the stability of some fixed point procedure, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică-Informatică, 18 (2002), 7–14.
    [20] Ş. Şoltuz, D. Otrocol, Classical results via Mann-Ishikawa iteration, Rev. Anal. Numér. Théor. Approx., 36 (2007), 193–197. http://dx.doi.org/10.33993/jnaat362-868 doi: 10.33993/jnaat362-868
    [21] J. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. http://dx.doi.org/10.2307/1989630 doi: 10.2307/1989630
    [22] D. Sahu, D. O'Regan, R. Agarwal, Fixed point theory for Lipschitzian-type mappings with applications, New York: Springer, 2009. http://dx.doi.org/10.1007/978-0-387-75818-3
    [23] C. Garodia, I. Uddin, A new fixed point algorithm for finding the solution of a delay differential equation, AIMS Mathematics, 5 (2020), 3182–3200. http://dx.doi.org/10.3934/math.2020205 doi: 10.3934/math.2020205
    [24] F. Ali, J. Ali, J. Nieto, Some observations on generalized non-expansive mappings with an application, Comp. Appl. Math., 39 (2020), 74. http://dx.doi.org/10.1007/s40314-020-1101-4 doi: 10.1007/s40314-020-1101-4
    [25] S. Khuri, A. Sayfy, A. Zaveri, A new iteration method based on Green's functions for the solution of PDEs, Int. J. Appl. Comput. Math., 3 (2017), 3091–3103. http://dx.doi.org/10.1007/s40819-016-0289-x doi: 10.1007/s40819-016-0289-x
    [26] S. Khuri, A. Sayfy, A fixed point iteration method using Green's functions for the solution of nonlinear boundary value problems over semi-finite intervals, Int. J. Comput. Math., 97 (2020), 1303–1319. http://dx.doi.org/10.1080/00207160.2019.1615618 doi: 10.1080/00207160.2019.1615618
    [27] S. Khuri, A. Sayfy, Numerical solution of functional differential equations: a Green's function-based iterative approach, Int. J. Comput. Math., 95 (2018), 1937–1949. http://dx.doi.org/10.1080/00207160.2017.1344230 doi: 10.1080/00207160.2017.1344230
    [28] F. Ali, J. Ali, I. Uddin, A novel approach for the solution of BVPs via Green's function and fixed point iterative method, J. Appl. Math. Comput., 66 (2021), 167–181. https://doi.org/10.1007/s12190-020-01431-7 http://dx.doi.org/10.1007/s12190-020-01431-7 doi: 10.1007/s12190-020-01431-7
    [29] S. Khuri, I. Louhichi, A new fixed point iteration method for nonlinear third-order BVPs, Int. J. Comput. Math., 98 (2021), 2220–2232. http://dx.doi.org/10.1080/00207160.2021.1883594 doi: 10.1080/00207160.2021.1883594
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1005) PDF downloads(96) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog