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1. Introduction

Let © be a nonempty, closed, and convex subset of a Banach space (X, | - ||). A self mapping
3 : D — Dis said to be nonexpansive if
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13 = Iyl < llx =yl
for all x,y € ©. As a generalization to nonexpansive mapping, in 2008, Suzuki [1] introduced
the generalized nonexpansive mapping. However, a more general class of mapping to the Suzuki’s
mapping was later introduced by Garcia-Falset et al. [2] in 2011, and it is said to be a mapping
satisfying condition (E).
A fixed point problem is a problem of finding a point x in the domain © (i.e., x € D) of an
appropriate mapping J : © — D such that
JIx=x (1.1)

holds.

In this paper, . (3) # 0 represents the fixed point set that contains all fixed points of the mapping J.
Fixed point theory has become quite useful in solving physical problems. The idea of fixed point theory
usually involves the transformation of any problem to a fixed point equation of the form (1.1), where
it is then approximated using a suitable fixed point iterative scheme in the framework of a suitable
mapping. Moreover, fixed point theory has overtime penetrated a diverse area of application in applied
sciences, engineering, and mathematics.

It is obvious that many physical problems are easily represented as differential equations and
difference equations, including initial value problems and boundary value problems. Noticeably, some
of these problems are difficult to solve by analytical method, such that transforming into a fixed point
problem becomes a redeeming way out in an attempt to solve the problem. However, solving a fixed
point equation analytically may pose some challenges of not admitting solution when the mapping fails
to be a self map. Thus, using the suitable approximation method becomes appropriate and the use of
fixed point iterative schemes turn out to be useful.

The use of an iterative scheme in solving fixed point problems has received remarkable attention
with tremendous contributions from researchers and, therefore, has recorded many developments in
literature; to mention but a few: Picard [3], Mann [4], AG [5], Picard-S [6], Agarwal et al. [7], and so
on. Readers interested in this direction of research should consult [5,8-11] and the references therein.

Our aim in this paper is to develop a novel fixed point iterative scheme called the Modified-JK
iterative scheme and use it to approximate the solution of delay differential equations and a class of
third order boundary value problems. Our scheme converges faster than some existing schemes, and
our results extend and generalize many results in literature. We also provide some numerical examples
to validate our results.

This paper is arranged as follows: Section 2 contains preliminaries, definitions, and lemmas.
Section 3 is dedicated to main results, which comprises of weak and strong convergence results and
stability and data dependence results. In Section 4, the main result is applied to the approximation
of delay differential equations. Application of our main result to solving third order boundary value
problems via Green’s functions is contained in Section 5. The conclusion of this paper is presented in
Section 6.

2. Preliminaries

The use of fixed point iterative scheme in solving some physical problems in mathematical sciences
has become a very remarkable tool for the approximation of the solutions of several problems,
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including the ones that have appeared unsolvable by the use of available analytical methods. The
following iterative scheme was introduced by Ahmad, et al. [12] in 2021, and they called it the JK
iterative scheme:

Wy = (1 - é:n)un + gnsuna

Vp = Swna (21)

Upy1 = 3[(1 - wn)swn + wn:svn]a n e N.

In 2000, Noor [13] defined the iterative scheme called the Noor iterative scheme:

Wy = (1 - ')/n)un + )/nsun’
Vn = (1 - é:n)un + fnsun + é:nswn’ (22)
Upyl = (1 — @)Uy + @, 3V, 1 EN.

Chugh et al. [14] in 2012 defined the CR iterative scheme:

W, = (1 - yn)un + 7n3un»
Vn = (1 - fn)sun + fni\SWn, (23)
Uy = (1 —@,)v, + @, Jvy, 1 EN.

Okeke [8] in 2019 introduced the Picard-Ishikawa hybrid iterative process:

Wy = (1 - é‘:n)un + gnsuna
Vp = (1 - wn)un + wnswn, (24)

~
Upy1 = \Svn, ne Na

where it was shown to be faster than some existing iterative schemes in literature and the result was
applied in approximating the solution of a class of delay differential equations.
Also, in 2022, Okeke, et al. [11] introduced the GA iterative scheme, defined as:

Vn = (L= &) fu + EJ s

Uy = (1 = @) fu + @IV,

th = Jup, (2.5)
hy = 3t

Jow1 = Jhp,n € N.

Motivated by the results above, we introduce a new iterative scheme, which is a modification of the JK
iterative scheme (2.1) by Ahmad et al. [12]. Our scheme is defined as follows:

Up=u €D,

wy = I = EDuy + &Junl,

Vi = J(J3Wn),

Upe1 = J[(1 = @,)Iw, + @, Jval, n €N,

(2.6)

The following definitions and results will be useful in this paper.
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Definition 2.1. []] Let D be a nonempty, closed, convex subset of a Banach space X. Let J : © —» D
be a mapping, then J is said to satisfy condition (C) if the following condition holds

1
Sl = 3l < e = vl = 1132 = 3yl < e = vl ©)

forall x,y € D.

A mapping satisfying condition (C) is otherwise known as Suzuki type generalized nonexpansive
mapping.
Definition 2.2. [2] Let © be a nonempty subset of a Banach space X. For u > 1, the mapping
3 1 D — X is said to satisfy condition (E,) on D if for all x,y € D,

llx = 3yl < pallx = 3xl + [l = yll. (2.7)
Moreover, J satisfies condition (E) on © whenever J satisfies (E,) for some yu > 1.

The next definition gives the description of Opial property, which will be useful in proving one of
our main results.

Definition 2.3. [15] A Banach space X is said to satisfy the Opial condition [16] if for each sequence
{u,} in X, converging weakly to u € X, we have

lim sup ||u,, — u|| < limsup ||u, — w||, (2.8)

n—oo n—oo

forall w € X such that u # w

Definition 2.4. [17] Assume J,S : © — D are two operators. We say that S is an approximate
operator of J for all x € © and a fixed € if

|Tx—CSx|| <e.

Lemma 2.1. [I8] Let X be a uniformly convex Banach space and {y,};", be any sequence of numbers
such that0 < a <y, <b <1, n21, fora,b € R Let{gp,}  and {w,},  be sequences in X such
that limsup ||@,|| < r, limsup ||w,|| < r, and limsup |ly,¢, + (1 — y)w,|| = r for some r > 0, then

n—00 n—o0o n—00

lim |lg, — wy|| = 0.

Lemma 2.2. [19]Ifp € [0,1) is a real number and {€,},", is a sequence of positive numbers such that

lim €, = 0, then for any sequence of positive numbers, {s,} " , satisfying s,.; < ps,+€,, (n =0,1,2,..),

n—oo

we have lim s, = 0.

n—oo

Lemma 2.3. [17] Let {n,} be a nonnegative sequence for which one assumes there exists ny € N for
all n > ny. Suppose the following inequality is satisfied:

77n+1 < (1 - QDn)nn + SDnQna
where ¢, € (0,1), Vn e N, 3" ¢, = 00, and 0, > 0 Vn € N, then

0 < limsupn, < limsup o,.

n—00 n—00
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Lemma 2.4. [I] Let J be a mapping on a subset © of a Banach space X with the Opial
condition satisfying (2.8). Suppose that J is a Suzuki generalized nonexpansive mapping satisfying
condition (C). If {u,} converges weakly to p* and 1i_>m [T u, —u,l| =0, then I p* = p*. Thatis, - T is
demiclosed at zero. o

Lemma 2.5. [20] Let {¢,} be a nonnegative sequence satisfying

Mn+1 < (1 - (pn)nm
where {¢,} € (0, 1), >.7" o ¢, = oo, then limn, = 0.

n—oo

The following is the characterization of the Garcia-Falset mapping.
Proposition 2.1. [2] Let © be a nonempty subset of a uniformly convex Banach space and J : © — D.

(a) If 3 is a Suzuki mapping, then J is a Garcia-Falset mapping.

(b) If 3 is a Garcia-Falset mapping having 7 (3) # 0, then for every choice of x € © and p € F(J),
I5x = pll < llx = pll holds.

(c) If 3 is a Garcia-Falset mapping, then the set ¥ (3) is closed.

Let © be a nonempty subset of a Banach space X and {u,} be a bounded sequence in X. For any
u € X, we define the asymptotic radius of {u,} at u by

R(u, {u,}) = limsup [lu — u,|.

n—oo

The asymptotic radius of {u,} relative to the subset D is denoted by
R(D, {u,}) = inf{R(u, {u,}) : u € D}.
The asymptotic center of {u,} relative to D is denoted by
AD, {up}) = {u € D : R(u, {u,}) = R(D, {u,})}

For a uniformly convex Banach space, the set (D, {u,}) is singleton [21]. Again, the set A(D, {u,}) is
convex and nonempty [22], provided D is a weakly compact convex subset.

3. Main results

3.1. Weak and strong convergence theorems

Lemma 3.1. Let © be a nonempty, closed, and convex subset of a uniformly convex Banach space
X. Assume J : © — D is a mapping satisfying condition (E) with F(3) # 0. Let {u,},., be a
sequence generated by the Modified-JK iterative scheme (2.6) for uy € D, then lim ||lu,, — p*|| exists for

all p* € Z(3J).
Proof. Let p* € % (J), then using the Modified-JK (2.6) and Proposition 2.1(b), we have
wn = 7l =S = EDun + E,IJual = Pl
<N[(1 = &EDun + E:IJual — Pl
<(1 = &)llu, — p*ll + &ElISu, — Pl
<(I = &)lluy = p'll + Enlla, — Pl
<llw, = p7II. 3.1
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Using (3.1), we have
e =PIl =l1F°w, = Pl

<II3wn — Pl
<lw, — p’ll
<llun = p°II. (3.2)

Also, using (3.1) and (3.2), we have

lttwir = P71l =S = @)Iw, + @, Iva] = Pl
<NA = @,)Iw, + @, Ival = Pl
<(1 = @)W, = p'll + @ulIIv = Pl
<(1 = @plw, = p’ll + @ullv, = Pl
<(1 = @,)lw, — p’ll + @,llw, — pl|
=lw, = p’ll
<llw, = p"Il. (3.3)

Noticeably, it follows that the sequence {||u, — p*||} is decreasing and bounded. Hence, lim ||u, — p*||
exists for p* € Z(3) # 0. O

Lemma 3.2. Let © be a nonempty closed convex subset of a uniformly convex Banach space X. Assume
that 3 : © — D is a mapping satisfying condition (E). Let {u,} ", be a sequence generated by the
Modified-JK iterative scheme (2.6), then % (3J) # 0 if, and only if, {u,} is bounded and lim ||Ju,, —

u,|| =0.

Proof. Suppose .#(3J) # 0 and p* € .%#(J). By Lemma 3.1, we have that lim ||lu, — p*|| exists and

{un},7, 1s bounded. Let

lim ||u, — p*|| = r. (3.4
From (3.1) and (3.4),
limsup |[|w,, — p*|| < limsup ||, — p*|| = r 3.5

and
limsup ||v, — p*|| < limsup |lu, — p*|| = r.

n—oo n—o0

Since J satisfies condition (E), and from Proposition 2.1(b), we have
13w, = P71 =13 = IP°Il < lluw — PVl
and

limsup [|3u, — p°|l < limsup [|u, — p*|| = r.

Now, from (3.3) of Lemma 3.1, we have that

letps1 = P7Il < llwy = P
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Taking lim inf of both sides, we have
r = liminf ||y, — p*l| < liminf [|w, — p*|l,
which follows that
r < liminf [|jw, — p*l. (3.6)

Combining (3.5) and (3.6), we have

r < liminf |[|w, — p*|| < limsup ||w, — p*|| < r,
n—oo

n—oo

so that
lim [lw,, = p*ll = r. (3.7)
From (3.7), we have
r = lim [hw, = p'l

= lim [IS[(1 = &un + E:Jua] = P

< im [I(1 = &)ty + EJun = p7ll

< im JI(1 = &)y = p7) + &St = PO

< lim i1 = &), = pOIl + lim I, (Su, = pO)II

< lim [I(1 = &)y = p7) + (St = POII-

Set ¢ = Ju, — p*, w, = u, — p*, and y, = &,. By Lemma 2.1, we have that lim ||Ju, — u,|| = O.
Conversely, suppose {u,} is bounded and lim ||Ju, — u,|| = 0. We want to show that .7 (3J) # 0.
Let p* € A(D, {u,}), and we prove that Jp* = p*. Since J is a Garcia-Falset mapping, we have that

RESp" {uy}) = limsup [lu, — Ip"|l

n—oo

< lim sup(ullue, — Juall + llen — pII)

n—oo

= limsup [lu, — p’]|

n—oo

=R(p", {un}).

It follows that Jp* € (D, {u,}), and A(D, {u,}) is a singleton set and contains exactly one element;
therefore, Jp* = p* and p* € .Z(3). Hence, completing the proof. O

The weak convergence result is as follows:

Theorem 3.1. Let J be a mapping satisfying condition (E), defined on a nonempty, closed, and convex
subset © of a Banach space X, which satisfies the Opial condition (2.8) with % (J) # 0. If for any
arbitrary iterate uy € D, {u,} is the iterative sequence defined by the iterative scheme (2.6) where @,
and &, are sequences of real numbers in [0, 1], then {u,} converges weakly to a fixed point p* € .F (3J).
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Proof. Let p* € #(3). From Lemma 3.1, strong limit, lim |Ju, — p*|| exists. To prove weak convergence
n—o00

of the iterative scheme (2.6) to a fixed point of J, we need to show that {u,} has a unique weak limit,
say, p1 and p, of subsequence {u,,} and {u, } of the sequence {u,}, respectively.
By Lemma 3.2, it is clear that lim ||u, — Ju,|| = 0, and by Lemma 2.4, I — J is demiclosed at

zero. Clearly, py, p» € #(3), and practically (I — J)p; = 0, which follows that Jp; = p;. Similarly,
(I = J)p> = 0, which implies Jp, = p».

Next, we want to show the uniqueness of the weak limits, that is, p; # p,. To do this, we shall use
the Opial condition to obtain the following:

lim lu, = pill = lim [lu,, = pi]

< lim [, = pal

= lim [|u, = p|

= lim llu,, ~ pol

< lim flu,, ~ pul

= lim [, = pl.
Clearly, this leads to a contradiction, so p; = p,, which implies that there is only one limit point p*.
We conclude that {u,} converges weakly to a fixed point in .7 (3J). O

At this point, we consider the strong convergence results.

Theorem 3.2. Let © be a nonempty, closed, convex subset of a Banach space X. Suppose J : D — D
is a mapping satisfying condition (E) such that F(3J) # 0. Let {u,} be a sequence generated by the
Modified-JK iterative scheme (2.6). If © is compact, then the sequence {u,} converges strongly to a
fixed point p* € F(J).

Proof. Let D be compact. Since D is compact, we can find a subsequence {u,,} of the sequence {u,},
which has a limit ¢ such that lim ||u,, — £|| = 0.
Also, since J is endowed with condition (E), we have

llu, = I < pallet,, — Ju || + |lee,, = €I (3.8)

Taking lim on both sides of (3.8) and the hypothesis of Lemma 3.2, we have

lim [lu,,, — 3¢ = 0,
that is, u,, — J¢.
Since u,, — J¢ and u,, — ¢, we prove that 3¢ — £. Consequently,

ISE = Al < NI3E = || + lletn, = LI = Nlet, = I + ey, = €Il = 0.

Obviously, ||3€ — €| = 0. It follows that J¢ = £. By Lemma 3.1, we can say that lim ||, — £ exists for

all £ € Z(3J).
Hence, we can say that J converges strongly to a limit £. Therefore, the proof is complete. O
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The next result shows the strong convergence of {u,} to a fixed point of a contraction mapping in a
uniformly convex Banach space X.

Theorem 3.3. Let © be a nonempty closed convex subset of a uniformly Banach space. Suppose
S : © — Dis a contraction mapping. Let {u,} be a sequence generated by the Modified-JK iterative
scheme (2.6) with real sequences {w,}, {&,} € (0, 1) satisfying Y 1, &k = oo, then {u,} converges strongly
to the fixed point p* € F(J) # 0.

Proof. From (2.6), let 3p* = p*,

Iwa = p*Il = I3[ = £)Juy, + &3] = Pl
< OII(L = &)Juy + E:Ju, — Pl
< 61 = Elluy — pIl + EllSun — pII}
< 8llun — p*Il + 6&allun — P11}
< 6(1 = EDlluy — 'l + 6°&llun — p'll
= [6(1 — &) + &, — Pl
< 6[1 =1 = )& lu, — pll.

Ve =PIl = I13%w, = Pl
< Ol3wa — Pl
< &lwa = plll
< &1 = (1= 8)¢llu, — pll

lttwsr — 7l = IS = @,)Iwn + @, Iva] = Pl
<Ol = @,)Iw, + @, Ival = Pl
<01 = @)I3w, = p'll + 6@,lIJve — Pl
< 6*(1 = @,)lw, — pll + S@yllva — p'll
<61 —@,)lw, — p'll + 8 @llwa — p'll
<{6® = 8@, + S Hwa — Pl
< 6[8% - 8w, + '@, ][1 — (1 = )& ]lluy — pll.

Since 6 < 1 and w,, € [0, 1], then

litni1 — Il < 6[1 = (1 = O)Elu, — p7l.
By induction, we have that
lluy — p*ll < 6[1 = (1 = O)éollluo — Pl
so that

e = p°ll < 8" Pllug = piIl | 11— (1 = )&,

k=0
Clearly, 6 € [0,1) and &, € (0, 1), which suffices that [1 — (1 — 0)&,] < 1 for all n € N.
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From elementary analysis, we have that 1 — x < e™* for x € (0, 1). Consequently, we have that

n

* 1 % —(1-8)&

ltsr = p'll < 6" Pllug = il | ] e
k=0

< (5(n+1)||u0 _ p*”e—(l—é)ZZ‘;ofk_

Since § € [0, 1) and Y3, & = oo, then e"1=9 Ziw0ék — 0 as n — oo,
Hence, lim u, = p*. Therefore, {u,} ", converges strongly to the fixed point of J. O
n—oo0

Example 1. Let X = R and © = [5, 10]. Let the mapping J : © — D be defined by

= ifx € [5,8],
s, ifx € (8, 10].

We want to show that J is a mapping satisfying condition (E) for u > 1. To show that, we choose a
specific value of u, i.e., u = 2, and consider the following cases:
Case 1. If x,y € (8, 10],

llx = 3yl =[x = Iyl = |x = 5] = |x — I
< 20x = Jx| < 2[x — Jx| + [x =y
= 2f|x = Jxll + llx = yll.

Case 2. If x,y € [5,8],
llx = 3yl = |x = 3yl
< x = 3x] + [3x = Iyl
x+5 y+5

= - —+
|x — I > >

1
= — <X + — —
|x — 3] 2Ix ¥

<|x—=3x+|x—yl

< 20x = 3Jx| +[x =yl

= 2||x = Jxll + llx = yll.
Case 3. If x € [5,8], y € (8, 10],

llx = 3yl = x = 3yl

x—5
—Ix—=5/=2
=3l 2‘

x+5
=2l =
()
= 2|x — 3x|

=20x = 3l + |x =yl
= 2llx = Il + llx = yll.

AIMS Mathematics Volume 9, Issue 3, 6468—6498.
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Cased. Ify € [5,8] and x € (8, 10],
llx = 3yl = 1x = Iyl

5

2x—-y—35
2
x=5
2

x+x—y—5‘
2

IA

X=)y
+
2

= Sle= 51+ 3l

<2lx =5+ |x—-yl|

< 200 = 3x| + |x -y

= 2[lx = 31| + [lx = yll.
As illustrated in the different cases, we confirm that J is a mapping satisfying condition (E) on
=[5, 10].

Next, for n € N, uy = 6 and choosing @, = %, &, = %, we generate a table and figure such that from
Tables 1 and 2 and Figures 1 and 2, it is clear that Modified-JK iterative scheme converges faster than
Mann, JK, GA [11], Picard-Ishikawa, Noor, and CR iterative schemes.

Table 1. Comparison of speed of convergence of some iterative scheme for Example 1.

Step  Modified-JK JK Mann Picard-Ishikawa
1 6.0000000000 6.0000000000 6.0000000000  6.0000000000
2 5.0700000000 5.1600000000 5.8000000000  5.3800000000
3 5.0049000000 5.0256000000 5.6400000000  5.1444000000
4 5.0003430000 5.0040960000 5.5120000000 5.0548720000
S 5.0000240100 5.0006553600 5.4096000000 5.0208513600
6  5.0000016807 5.0001048576 5.3276800000 5.0079235168
7 5.0000001176 5.0000167772 5.2621440000 5.0030109364
8  5.0000000082 5.0000026844 5.2097152000 5.0011441558
9  5.0000000006 5.0000004295 5.1677721600  5.0004347792
10 5.0000000000 5.0000000687 5.1342177280  5.0001652161
11 5.0000000000 5.0000000110 5.1073741824  5.0000627821
12 5.0000000000 5.0000000018 5.0858993459  5.0000238572
13 5.0000000000 5.0000000003 5.0687194767  5.0000090657
14 5.0000000000 5.0000000000 5.0549755814  5.0000034450
15 5.0000000000 5.0000000000 5.0439804651  5.0000013091
16  5.0000000000 5.0000000000 5.0351843721  5.0000004975
17  5.0000000000 5.0000000000 5.0281474977 5.0000001890
18  5.0000000000 5.0000000000 5.0225179981  5.0000000718
19 5.0000000000 5.0000000000 5.0180143985  5.0000000273

20 5.0000000000 5.0000000000 5.0144115188  5.0000000104

AIMS Mathematics
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Table 2. Comparison of speed of convergence of some iterative scheme for Example 1.

Values of u,
o o o a ua o
N (6} [e)] ~ [e0) [{e] (o))
T T
y

o
w
T

a
N

511

Figure 1. Graph corresponding to Table 1.

6 8 1
Number of iterations

—6— JK

—H— Modified-JK

—~4A— Mann
—&— Picard-Ishikawa | |

Step Modified-JK GA Noor CR
1 6.0000000000 6.0000000000 6.0000000000 6.0000000000
2 5.0700000000 5.0950000000 5.7520000000 5.3680000000
3 5.0049000000 5.0090250000 5.5655040000 5.1354240000
4 5.0003430000 5.0008573750 5.4252590080 5.0498360320
5 5.0000240100 5.0000814506 5.3197947740 5.0183396598
6  5.0000016807 5.0000077378 5.2404856701 5.0067489948
7 5.0000001176 5.0000007351 5.1808452239 5.0024836301
8  5.0000000082 5.0000000698 5.1359956084 5.0009139759
9  5.0000000006 5.0000000066 5.1022686975 5.0003363431
10 5.0000000000 5.0000000006 5.0769060605 5.0001237743
11 5.0000000000 5.0000000001 5.0578333575 5.0000455489
12 5.0000000000 5.0000000000 5.0434906848 5.0000167620
13 5.0000000000 5.0000000000 5.0327049950 5.0000061684
14 5.0000000000 5.0000000000 5.0245941562 5.0000022700
15 5.0000000000 5.0000000000 5.0184948055 5.0000008354
16  5.0000000000 5.0000000000 5.0139080937 5.0000003074
17 5.0000000000 5.0000000000 5.0104588865 5.0000001131
18  5.0000000000 5.0000000000 5.0078650826 5.0000000416
19 5.0000000000 5.0000000000 5.0059145421 5.0000000153
20 5.0000000000 5.0000000000 5.0044477357 5.0000000056
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Values of u

0 2 4 6 8 10 12 14 16 18 20
Number of iterations

Figure 2. Graph corresponding to Table 2.

3.2. Stability and data dependence results

In this section, we discuss the stability and data dependence result of our new iterative scheme.

Theorem 3.4. Let X be a Banach space. Suppose J : © — D is a contraction mapping with ¢ € [0, 1)
and it has a fixed point p* € F(3J) # 0. Suppose {u,};- is a sequence generated by the Modified-JK
fixed point iterative scheme (2.6) that converges to p*, then (2.6) is stable with respect to 3.

Proof. Suppose that {m,} ; C X is an arbitrary sequence in © and assume that the sequence generated
by the Modified-JK is u,,; = f(J, u,) converging to a unique fixed point p*.
Let €, = ||m,41 — f(J,m,)||. Our aim is to show that lim ¢, = 0 if, and only if, lim ||m, — p*|| = 0.

n—oo

Assume r}l_}tg €, =0.

M1 = poIl = lImper = f(Q,m) + f(3,mn) = Pl
< ey = F(S m)ll + 1S, my) = Pl
< & + (3, m,) = Pl
< & + I3 = @,)Iw, + @, Ival = Pl
< &+ |1 = @)Iwy + @, I3ve — Pl
< &+ (1 =@)IIw, = p'll + @,lIIve = Pl
<&+ —@)lw, = p'll + @llv, — p°ll. (3.9)

From (2.6),
v, = p*ll =lI3*w, — p°ll

- . . (3.10)
<lI3wn =PIl < lwn = Pl
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and
w, = p7Il = ISI(L = E)Imy, + £,:3m,] = 7l
< I = &)Imy + &:3m, — Pl
< (1 = &EDIISm, = prll + &ullIm, — Pl
< [|I3m, — p|l
< |lm, = p°ll (3.11)

Combining (3.9)—(3.11), we have

1 = p7Il < limy — p7l.

By Lemma 2.2, we have lim |jm, — p*|| = 0, that is, lim m, = p*. Conversely, assume lim m, = p*,
then o o o
€ = 1My — (3, my)l

<lmyper = p™ + p* = f(3, ma)ll

< Al = Pl +llp™ = F(S ma)ll

< per = Ul llp* = JLA = @)w, + @IVl

< Mper = P+ A = @)W, + @, Ival = Pl

< mysr = prll+ (1 = @)lw, = p'll + @allIve = Pl

< Almpr = prll+ (A = @)lw, = p'll + @llv, = Pl

< lmper = poll+ llwy = Pl

< M1 = prll + llmy — p7Il.

Taking limit as n — oo on both sides and having that lim m, = p*, we have that lim ¢, = 0. Hence, the
n—oo

n—oo

iterative scheme (2.6) is stable with respect to J. |

[

Theorem 3.5. Let © be an approximate operator to J being a contraction mapping. Suppose {u,}"
is an iterative sequence generated by the Modified-JK iterative scheme (2.6) for J, and define the
approximate scheme of the sequence {t,}" . Thus,

lh=tedD
.= S[(1 =&, + &,58,
‘9‘_62[; Endln + &St (3.12)

b1 = 6[(1 - wn)glun + ZD—ne@n]a

where {w,} and {&,} are real sequences in [0, 1] satisfying the conditions (d,) % < é&,and V¥n € N and
setting w, = 1. If Ip* = p* and St = 1" such that lim ||t, — 7°|| = 0, then we have for 6 € (0, 1),

llp* — 7% < %, where € > 0 is a fixed constant.
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Proof. Using (2.6) and (3.12),

Iwn = pall =ISI(L = EDty + EJun] = SI(L = ENty + £,81,]]
<ISIA = EDuy + E,3u,] = I = ENty + ,C1,]
+ J[(1 = Ety + &,Ct,] — S[(1 = &t + £,C1,]l]
<A = EDuy, + &3] — I = Ety + &,
+ IS = &)ty + £,8] = SI(1 = &Nty + £,
<O = &ty + &3ty — (1 = Ety — &,C,l| + €
<6(1 = &ty — tall + 6&,||Ju, — Styl| + €
<6(1 = Eluty — tall + 8,13ty — It + It — Ctll + €
<6(1 = Mty — toll + &It — Jtall + 6,113t — Stll + €
<6(1 = Eluy = tall + %l — tall + 6&€ + €
=[6(1 = &) + 6%l — 1]l + 6, + €
<O[1 — (1 = 0)éu, — tall + 6&,€ + €, (3.13)

Ve = 6l =N3[IWi] = S[Swa]ll
<ISLSIWa] = ISl + ISl = S[Sw, Il
<ISIIwal = ISl + €
<6[IJw, — Spall + €
<OIIJWn — Jptn + Jn — Sptll + €
<OIIIwn — Il + SlIJptn — Sl + €
<O|IJw, — Juall + 0€ + €
<8%|Iw, — wall + S€ + €. (3.14)

Putting (3.13) in (3.14),

”Vn - gn” = 62{6[1 - (l - 6)511]””11 - tn” + 6‘5)16 + E} +0e+ €
<[ = (A = 8)é Ny — toll + 5°&n€ + 6%€ + de + €. (3.15)

lttns1 = tusill =ISLA = @)IW, + @, IVl = Sl - @) S, + @,E6,]||
<ISLA = @)Iwn + @IVl = I — @) S,y + @, S6,]
+ 31 - @) S, + @,26,] - S[(1 - @,) Sy, + @, S6,]l
<O|I[(1 = @,)Iw, + @, Iva] — [(1 — @,) G, + @, SO, + €
<6(1 = @)IIWn — Sl + 6@,[IIv, — SO, + €
<6(1 = @)IIIWn — It + Iptn — Sl + 6@ [IIvis — IO, + I0, — SO, + €
<6(1 = @)IIWn = Jptall + (1 = @)IJptn — Spall
+0@,|Jv, = IOl + 6@,136, — S0,/ + €
<6 (1 = @)Wy — ol + (1 = @,)e + 5@, ||V — O, + 6w ,€ + €
=6%(1 — @)Wn — ttall + 8> @ul[vy = B,l] + 6(1 — @))€ + dwe + €. (3.16)

AIMS Mathematics Volume 9, Issue 3, 6468—6498.



6483

Combining (3.13), (3.15), and (3.16),
1 = tastll =6°(1 = @HS[1 = (1 = )élluy — tall + 6&,€ + €}

+ 8@ {0°[1 = (1 = OENlun — 1] + 6n€ + 6%€ + 5°€ + 5€ + €}
+0(1 —w,)e+ow,e+e€

<8 (1 = @)1 = (1 = O llu-toll + (1 = @, )éne + 6°(1 — @,)e
+ 8@, [1 = (1 = 8)élup — tl| + S woéne + 6 w,e + S wye (3.17)
+ 0w ,€ + o1 —w,)e+ow,e+¢€

=[6°(1 — @) + C@, ][l — (1 = O)é Ny — tall + 8&ne + 6% + 6 €
+6%€+0e+e€

<&[1 = (1 = &Ny — toll + °6,€ + € + 6%€ + Se + €.

Sinced < 1,n € N, thend < 1,6* < 1,6° < 1,6%> < 1. We note that 1 — &, < &,, s0

”un+1 - tn+1|| S[1 - (1 - 6)§n]”un - tn“ + é:ne + 5€
S[1 - (1 - 6)§n]”un - tn“ + fnf + 5(1 - gn + (fn)E (318)

11e
<= (0= &My = 1l + £:(1 = ) 7.
Let 7, = lluy = ], 0 = &(1 = 8) € (0,1) and o, := L. From Lemma 2.3, it follows that 0 <
1le

lim sup [|u, — £,]| < lim sup {=5. From Theorem 3.3, it is obvious that lim [|u, — p*|| = 0. Consequently,
n—oo

n—oo n—oo

with the assumption lim ||z, — 7¥|| = 0, we have
n—oo
11e
1-6
Hence, the proof is complete. O

P =77l <

4. Applications to delay differential equations

Delay differential equations have been very useful in modeling some problems of applied sciences,
like the biological science such as drug therapy, immune response, and epidemiology, and in other
aspects of science, such as neural networks.

Let C([a, b]) denote the space of all continuous functions on the interval [a, b], endowed with the
max norm,

If — gl = max |f(x) — g, Vf,g € C(a,b)),

such that the space C([a, b],|| - ||) is a Banach space.
In this section, our aim is to use our new fixed point iterative scheme, Modified-JK iterative
scheme (2.6), to approximate the solution of the following delay differential equation,

Y'(x) = fx, y(x), y(x — ), ¥Yx € [x0, 0] (4.1)

with initial condition
y(x) = R(x), x € [x9— 4, x0]. 4.2)

To achieve our aim, the following axioms are considered:
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Axiom 1. Assume that the following conditions hold:
(D) x0,beR, 1>0;

(2>) f € C([x0,b] X R?, R);

(Z5) N € C([xo — 4, %], R);

(Z4) there exists Ly > 0, such that

| y1,y2) = f(x, 81,82l < Le(ly1 — g1l + [y2 — &20),
forally;,g; €R, j=1,2, and x € [x, b];
(95) 2Lf(b - X()) <1

Next, the Eqs (4.1) and (4.2) are reformulated as the following integral equation:

) = {N(x), X € [xo — A, x0], 43)

N(xo) + [ f(5.¥(5),y(s = D)ds,  x € [x0,b].

The next theorem which is highlighted in [23] (and other references in literature on the subject matter)
shows the existence of a prototype delay differential equation (4.1) and (4.2). The theorem will be
useful in the proof of our main result for the convergence of the iterative scheme (2.6) to the solution
of (4.1) and (4.2).

Theorem 4.1. Suppose the conditions (2,)—(Ys) are satisfied, then the sequence {u,} generated by the
Modified-JK iterative (2.6) has a unique solution y € C([xo— A4, b], R)NC’([xo, b],R) and y = lim T"(x)
for any x € C([xp — 4, b], R).

The next theorem represents our result on the aspect of this section.

Theorem 4.2. Assume that conditions (2,)—~(Zs) are satisfied, then the sequence {u,} generated by the
Modified-JK iterative scheme (2.6) with .7, @, = oo, converges to the solution p* € C([xo—A4,b],R)N
C’'([x0, b1, R) of the delay differential equation (4.1) and (4.2) for uy € C([xo — A, b], R).

Proof. Let
N(X), X € [-xO - /19 XO]’
R(xo) + [ f(s,¥(s), (s = D)ds, x € [x0,bl,
be an integral operator with respect to (4.3). Let {u,} be a sequence defined by the Modified-JK iterative
scheme (2.6) for the operator (4.4). By Theorem 4.2, let p* be the fixed point of J. We want to show
that lim ||u, — p*|| = 0. Suppose x € [xy — 4, xp], then it is easy to show that lim ||, — p*|| = 0. Assume
X € [xg, b]. We define g, = (1 — &Duy, + E,3uUy; 1y = 3q, and s, = (1 — @) I, + @37, 1 € N,

Using (2.6), and (Z,), we have

Jy(x) = { 4.4)

”CIn - p*”oo :”(1 - ‘fn)un + fni‘SMn - p*”oo
S(l - fn)llun - p*”oo + §n||3un - Sp*”oo
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Using (2.6) and (%),

17w = Pl

AIMS Mathematics

:(1 - é‘:n)”un - p*”oo + é‘:n max |3un - SP*|
x€[xo—A1,b]

(1= &l = e+ & mnax NG+ [ (51 (s - s

[xo—

— N(x) + f f(s5,0°(5), p'(s = D)ds|
:(1 - gn)”un - p*”oo + gn xegc}fi)jb] ' f f(S, l/tn(S), I/tn(S - /1))(1’5
- f f(S, p*(S), p*(s - /l))dS|

<1 = &Dllun = Plleo + & efnaﬁb]f Ly(jua(s) = p(s)|
XE|Xp—A,

X0

+ lun(s = 2) = p"(s = D)|)ds
<1 = &)llty = p'lls + & f Ly( _max {u,(s) = p'(s)

+ max (s =) = p'(s - D)ds

X€[x0—-A,

S(1 - é:n)”un - p*”oo + é:nf Lf(”un - p*”oo + ”un - p*”oo)ds

X0

<(1 = &Dlln = pllleo + fnf 2Lglluy — plleod's

X0

<(1I = &Dlltn = P7lleo + 264 Ly (b — x0)ll1ty — P leo
<[1 =1 =2Ls(b = x0)&ullltn = P’ llco-

=l13¢» — P llw
:”3%1 - SP*HOO
= Jax [3g.(s) = 3p"(s)|
= max ‘N(xo) + fxo S5, qn($), gn(s = A))ds
~ N(xo) + f Fs.p(), p'(s = )|
= xeg:)%)/%h] ‘ f f(S, QH(S)a qn(s - 1))ds - f f(S, p*(s)’ p*(s - A))ds‘
< max f £(5,00(5), guls = D) = f(s, " (5), p'(s = D)|ds
< max f Ly(lga(s) = ()] + lga(s = D) = p*(s = Dl)ds

x€[xp—A1,b] X0

< | L max |g,(s)—p*(s)|+ max |g,(s—2)—p (s—2|)d
fxo A max 1g,() = p'(s) + max lg,(s = 1) = p'(s = Dl)ds

x€[xp—A,
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= [ 2105 = P+ s = 0 = s = Dl

X0

= f ) Ly(llgn = p"lleo + lign = p’lls)ds

X0

Sf 2Lyllgn — P"llwds

X0

<2L(b = x)llgn — P"lleo
<2Ly(b — x0)(1 = (1 = 2L (b = x0)&, )lltts = "o

Using (2.6), (%), and (Z5), we have

||un+1 - p*”oo :Hsn - p*”oo
:H(l - wn)s% + WnTSVn - p*”oo
<(I = @)IGn = IP Moo + @ullIrn = Pl

=1 -w,) max |3q,—3Ip'l+@, max |[Ir,—Ip’|
x€[xo—A,b] x€[xo—A,b]

=(1-@,) max [N+ f F(5.0(8). qus = D)ds

x€[xp—A,

~ N(xo) - f f(s,p'(5), p*(s = )]

+ w, max
x€[xo—A,b]

N+ [ G5 ronts = s
~NGo) = [ 6075 = )]

=(1 - @,) max
x€[xp—A,b]

f £, 1(8), 7als = D) f f(s P (), p"(s = D)

0

X
<(1 —w@,) max f
x€[xo—A,b] X0

+ @, max f 505 = D) = £ (50, (s — D)

x€[xp—A,b] X0

<(-w,) max f L(1gu(s) = p*(9)] + lgu(s = D) = p"(s = D))ds

x€[xp—A X0

[ s ants = ands = [ 5.0 - 0y

+ w, max
x€[xo—A,b]

F(5,0n(8), a5 = D) = s, p" (), p' (s = D)|ds

+, max f ) Ly(Ira(s) = p" ()| + Ira(s = 2) = p*(s = D)I)ds

x€[xp—A,b] X0

<(1 - @, max f Lf(lqn —p'l+1gn - p*l)ds

x€[xp—A,b] X0

+ @, max f Lf(lr,, —px|+r, - p*l)ds

x€[xo—A,b] X0
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X
<(1l-w L/ max — p*|+ max - p*l)ds
( n) fo f(xe[xo_/l,b] I, = Pl + max. lqn r’l)
X

+ @ L(max r,—pl+ max r—*)ds
"L f xe[xo—/l,b]l n= Pl xe[xo—/l,b]l Pl

~=a) [ Ly{lgn =Pl + g = 2l )
X0

X
+ wnf Lf(”rn - p*”oo + ”rn - P*||oo)ds

X0

< - wn)f 2L¢llgn — p’lleods + @, f 2L4lIr = plleods
X0

X0

<2(1 = @) Lp(b = X0)lign = P*lleo + 2@uLy(b = xo)llrs = Pl
<L — xp){(1 = @)([1 = (1 = 2L (b = x0)élluy — p'llss)

+ @21y (b = x0)[1 = (1 = 2L (b = X))ty = p’lleo)}
<2Ly(b = x0)[1 = (1 = 2L (b — x0))é, Mty = p'lll (1 = @) + 2Ly (b = x0)}
=2L(b - xo)[1 = (1 = 2L (b — x0)w, (1 = (1 = 2L (b = x0))é, Mty = Pl

It is convenient to state that [1 — (1 — 2Ls(b — x¢))é,] < 1, so that by (Zs), we have that
lttnsr — p¥Il < [1 = (1 = 2Ls(b — x0))@u]llty — P llco- (4.5)

Let ¢, := (1 = 2Ls(b — xp))w, < 1, for @w, € (0, 1) such that }, 7, @, = oo and 17, := ||, — p*[l.
Hence, (4.5) becomes
Mn+1 < (1 - SDn)nn

Clearly, from Lemma 2.5, we have that lim ||, — p*|| = O, thereby completing the proof. O

Obviously, our result extends other existing results (see, for example, [10, 20, 24] and references
therein).

5. Applications to third order boundary value problems

5.1. Construction of Green’s functions

Here, we consider the construction of Green’s functions for the following third order boundary
value problems (BVP):

L[h] = g1(Dh" (1) + g2(DR" (1) + g3(DA' (1) + ga(DA(1) = D(1), (5.1
where t € [a, b], accompanied by the following boundary conditions (BCs):

Bo[h] =p1h(a) + @i (@) + p3h" (@) = ¢,
Bg[h] =A,h(B) + LI (B) + 3R (B) = 4, (5.2)
B, [h] =y h(y) + ¥l (y) + Y3k (y) = ¢,
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fory=aory=,.

L[h] is linear, the righthand side of (5.1) can be written compactly as ®(t, h(t), h'(t), h”(t)), which
may be linear or nonlinear, and ¢, A,y are constants. The homogeneous part L[h] = 0 of (5.1) can be
solved to obtain corresponding linearly independent complementary solutions: /i, hy, and hs.

The Green function is a piecewise function expressed as a linear combination of the complementary
solutions Ay, iy, and h3. Thus,

(5.3)

arhy + axhy + azhs, a<t<s,
G(t,5) =
bihy + byhy + bshs, s<t<b,

where a;,b; (j = 1,2, 3) are constants that can determined through the following axioms:

(A)) G satisfies the associated boundary conditions:

B,[G(t, s)] = Bg[G(t, 5)] = B,[G(t,5)] = 0.

(Ay) G is continuous at t = s:

aihy(s) + axho(s) + ashz(s) = bih(s) + bahy(s) + b3hs(s).

(A3) G’ is continuous at t = s:

a ' (s) + axhs(s) + ashy(s) = bih\(s) + bahs(s) + bsh;(s).
(A4) G” has jump discontinuity at = s:

1
ayhy (s) + aly (s) + azhy (s) + % = b1hy (s) + byl (s) + b3hy (s).

The Green function represents the solution of the boundary value problem that takes the form
- L[G(t,5)] = 6(t =), (5.4)
where ¢ is the Kronecker Delta that is subject to the homogeneous boundary conditions
B,[G(t, s)] = Bg[G(t, 5)] = B,[G(t, 5)] = 0.

Notably, for operators that are self-adjoint, the righthand side of (5.4) will be —6(z — s). The Green
function expressed in (5.3) can be obtained from the homogeneous part in the form L[G(z, s)] = O for
t+s.

5.2. Modified-JK-Green iterative scheme

In this section, we will embed the Green function in the Modified-JK fixed point iterative
scheme (2.6). To achieve this, we consider the nonlinear boundary value problem:

L[h] + N[h] = ©(t, h), (5.5)
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where L[h] and N[h] are, respectively, linear and nonlinear functions in 4, and ®(¢, ) is a function in h
that may be linear or nonlinear.

Suppose that £, is a particular solution of the nonhomogeneous part of (5.5). We can define an
integral operator in terms of the Green function, and the particular solution £,,,

b
Mh,) = f G(t, s)L[h,ds, (5.6)

where G is the Green function corresponding to the linear differential operator L[Ah]. Setting h, = €,
(5.6) becomes

b
M(Q) = f G(t, s)L[Q]ds. (5.7)
Clearly, Q is a fixed point if, and only if, Q is a solution of (5.5). Rewriting (5.7), we have
b
M (Q) :f G(t, 5)[L[Q] + N[Q] — D(1,Q2) — N[Q] + D(1,Q)]ds
b
< f G(t, 5)[L[Q] + N[Q] — D(t,Q)]ds
o (5.8)
+ f G(t, s)[D(t, Q) — N[Q]]ds

b
=Q+ f G(t, $)[L[Q] + N[Q] — (1, QY)]ds,

where h, = Q = fa b G(t, 5)[D(1, Q) — N[Q]]ds. Applying the Modified-JK iterative scheme (2.6), we
have
Wy = %[(1 - é:n)un + é‘:n%[un]]a
Vp = %2[Wn]a
Un+1 = %[(1 - wn)%[wn] + wn%[vn]]»
where {£,} and {w,} are real sequences in [0, 1] for all n € N.
We have
b
wa =[(1 = &y + Enluy + f G(t, $)(Llu,] + Nlu,] = ©(t, u,))dls}]
b b
+ f G(t, S)(L[(l = &ty + Enfuty + f G(t, s)(LIuy] + Nluy] — @(2, u,))ds}]
b
+ NI = &uy + Eluy + f G(t, s)(L[u,] + Nlu,] — ©(s, u,))ds}]
b
- (D(S’ [(1 - é:n)un + fn{un + f G(t7 S)(L[Mn] + N[un] - (D(S’ I/ln))dS}]))dS,
b
Vo = M [w,] + f G(t, )(LLA (w,)] + NLA w11 = (s, .4 [w,]))ds,
b
p =[(1 — @) MWyl + @l [v,]] + f G(t, $)(LI(1 = @) A [w,) + @l [V,]]
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+ NI(1 = @) A [w,] + @l 1] = OCs, [(1 = @) [w,] + & [v,]]))ds.

Furthermore,

o f "G, $)(Lluy] + Nluy] = O(t, u,))ds |
+ f "G $)(Lltty + & f " G, (L] + Nl ~ 00t 1))
+ Nluy + &, f b G(1, s)(L[un] + Nluy] — O(s, up))ds]
= @(s, [un + & f b G(t, $)(LIuy] + Nltt,] = O(s, u,))ds]))ds,

v =|w + f "Gt )4y + N, = D5,
+ f b G(t, 5)(LIw + f b G(t, $)(L[wa] + N[w,] = ©(s, wy))d's]
+ Nlw, + f b G(1, $)(LIwn] + Nlw,] = ©(s, w,))ds]
— (s, [wy + f " G, (L] + Nwy] — 0, wa)ds)))ds,

1 =[(1 = @), + f "G, LI + Nw] — BCs, wy))ds]

+ @[V, + f " G, (L + N — (s, va))ds]|
+ f "G (L[ = @)Dw, + f G, L + Nl — BCs, wy))ds]
+ @[V, + f " G, (L + N — (s, vi))ds]|
+ N|(1 = @), + f "G (LI + Nwy] — W w,))ds]
+ @y, + f " G, (L + V] — (s, wa))ds] |
— (s, [(1 = &lw, + f " G, (LW + N1 — (s, wyds]
+ @[V, + f b G(t, $)(L[v,] + N[v,] = (s, v,)ds])ds)ds. (5.9)

5.3. Convergence analysis result

In this section, our aim is to show the convergence analysis of our iterative scheme (2.6) for a BVP
using the Green function. Without loss of generality, we consider the BVP:

— " (1) = O, h(t), ' (1), h" (1)) (5.10)
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with accompanying BCs

W) =R,1'(1)=S,h2) =T.

By solving the homogeneous part 2””’(¢) = 0, the following Green function is imminent,

atP+art+asl <t<s<2,
G(t,5) = 5
Ditr + bt +b3,1 <s<t<2.

By Axioms (A;)—(Ay), the constants a4, a,, as, by, by, and bs can be obtained. After obtaining the values
of the constants, the Green function becomes:

%ls2+2s—2+(%sz—2s+2)t, 1 <t<s<
—s7+25 =2+ (587 =25+ 2t — 3%, 1

G(t,s) = {

Hence, the Modified-JK-Green iterative scheme (5.9) is given as:

Wy = SG[(I - gn)un + fnSGun]’
Vn = Séwm (5.11)

Up+1 = 30[(1 - wn)sGwn + wnstn], ne N’

where 3 : C*([1,2]) — C?([1,2]) is an operator defined by

2
So(u) = u + f G(t, )" — O(s,u,u’,u’"))ds (5.12)
1

244

and the initial iterate u, satisfies the homogeneous equation u;” = 0 and the boundary conditions
up(l) = R, ug(1) = §,and up(2) = T.

Again, if we use integration by part for flz G(t, s)u"ds, as expressed in (5.12), with the condition

that [* 299 p(s)ds = [ (1 — $)h(s)ds, then we have that

2
Ic(u) =2 —-1R + %(t2 -3t+2)S + (- DT — f G(t, s)D(s,u,u’,u’")ds. (5.13)
1

The next result is to show that the operator J is a contraction on the Banach space C?([1,2]) with

regards to the norm
2

lllez = ) sup [« (s)

‘oo 1.2l

under some weakened conditions on O.
Furthermore, we shall show that under certain hypotheses on @, J; is a Zamfirescu operator.

Theorem 5.1. Suppose ®, which appears in the expression of 3¢, satisfying a Lipschitz condition of
the form:

(s, u ', u”) — D(s,8, 8", 8" < piluls) = g() + Palu’(5) = &' (O + P3lu” () =" (), (5.14)
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where 91, 92, and @3 are positive constants such that

1
3 max{g;, 92, 3} < 1.

The operator 3¢ is a contraction on the Banach space C*([1,2], || - |lc2), and the sequence {u,} defined
by the Modified-JK-Green iterative scheme (2.6) converges to the fixed point of J¢.

Proof. Suppose u;, u> € C*([1,2]) so that by the Lipschitz condition (5.13), we have
2 2
Se(t) - Jo(w)| =| f G(t, )0(s, uy, u;, i )ds f G(t, 5)0(s, 1, s, 1 s
1 1
2
s f G(t, (s, , 1, ) = s, a, s, 1) )|
1
2
< f G, HND(s, wr, uy, uy) — D(s, ua, 45, 1)lds
1
2
<( sup 16, S)I)f (s, wy, uy, uy) = (s, 1z, 145, 1y )lds
1

[1,2]x[1,2]

3 2
=G(-,1 D(s, up,uy, u)) —DOs, ur, us, uy)lds
(4 )‘fl‘l( 1 1 1) ( 25 Uy z)l (5.15)

1 2 ’ 144 ’ 7"
:g f |(D(S5 ubu]’u] ) - q)(s9 uz’ u29 uz)lds
1
1 2

=3 f {91lu1(5) = ua(9)] + P2l (5) = ()| + slut] (5) — w5 (s)l}dls
1
1 2 & .
<g max{p1. 92, 9s) f (D 1(s) = (s))ds
[
1
Sg max{p1, P2, P3}llur — uallc2

<|luy — uzllca.

This follows that J; is a contraction.

On the other hand, we want to show that the sequence {u,} defined by the Modified-JK-Green
iterative scheme (5.9) converges strongly to the fixed point of the operator J¢. Since J¢ is a contraction,
it is obvious from the Banach contraction principle that the existence of a unique fixed point, p* of Js
in the Banach space C*([1,2],]| - ||c2) is guaranteed. That is, we shall show that 31_210 |, — p*l| = 0.

Using iterative scheme (5.11), we have

W, = Pl =lI36 (1 = Eun + EnJcun] — Pl
<oll(1 = &un + Eadcun — Pl
<6(1 = Ellun = p*ll + 8 Enllu, — p*ll
=0[1 — (1 = 6)&ulllue, — p7II-

(5.16)
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Again, using (5.11) and (5.16),

e =PIl =lI3gwn — Pl
<6lI36ws = P’
<&lw, = p°ll
=5’[1 — (1 = &)y, llu, — p°Il.

(5.17)

Next, using (5.11) and (5.17),

ltnsr = Pl =6 I = @)IGWn + @uJ6val — Pl

<61 = @,)I6Wn + @uI6va — Pl

<6(1 = EDNISown — Pl + 6&I36va — Pl

<6’(1 — @)lwy = p'll + S@llva — pll 5.18)
<6°(1 = @)lwy — p'll + 8* @, llw, — P’ '
=[6°(1 = @) + 8*@,llw, — p'll
=6’[(1 — @) + 5@, llw, — p'll
=6’[1 = (1 = M@, ]lw, — p'll.

Combining (5.16) and (5.18), we have
i1 = Pl < 8°[1 = (1 = )& = (1 = 8@, ]llu, — pll-
Since 6 € [0, 1) and @, &, € [0, 1], then [1 — (1 — 6*)w,] < 1. This implies that

s = p'Il < 811 = (1 = §)é NIy = p7ll-

By induction, we have
et — Yl < V11 = (1 = Oélluo — pll

s = P11 < 8 Vllg = pll | 11 = (1 = )&l

k=0

Recalling that 6 € [0,1), @, € [0,1] for all n € N, and from elementary analysis 1 — x < e * for
x € (0, 1), we have that

n

* 3(n+1 * 1 —(1=6
i1 = Il <6 Pllug — p*II™* He (1-0)
k=0
§(53(”+1)||u0 _ p*||n+1€_(1_6)2zo:0§k,

Clearly, if 35, & = oo such that e=17) 2% — (0 as n — oo, then lim [|u, — p*|| = 0.
n—oo

Hence, the proof is complete. O
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5.4. Numerical example

Example 2. Consider the BVP

"(F) + tut_lt2+1:0,
Y1) ?()y() O'(0) (5.19)
y(0) =y"(0) = y(1) = 0.
The corresponding Green function to Eq (5.19) is given:
A+l —st+%, 0<s<t,
G, )= {25 T 7SS ’ (5.20)
(5 +s—3)r, t<s<l.

Embedding (5.19) and (5.20) in the iterative scheme (5.9), we have

t 2
=|u, + &, fo ((—ls + )2 — st + 5)(u”'(s)+u,,(s)u (s) = ((5))* + 1)ds

Wn

| )
+&, f ((Ts+s—§)t )14 (5) + () () = (i ()Y + 1)d }

+ ft ((_—ls2 + 8$)° — st + S—z)
o V2 2
1
X ((u +é, f Gt )1 (5) + ()t (5) = (u(5)* + 1)ds)”
0
1
+ ((un + &, f G(t, )1 (8) + un($)1](5) = (1, (5)) + 1)ds)
0
x (s + &, f Gt 5)(w}'(5) + un(Ne () = (u(5) + D)
1
(G, + &, f G(t. )} (5) + () (5) = (u(5))* + 1)ds) )2+ l)ds
1 1
+ f, (% +s5— %)tz((u +£, fo G(1, $)(u)" () + un(s)ut () = (1, (5))* + Dds)
1
+ ((tn + &, f G(t, )} (5) + ()] (5) = ((5))* + 1)dls)
0
1
X ((ty + &, f G(t, )1 (5) + (L () = () + D)dls)”
0
1
— (((ua + &, f G(t, $))' () + un()u;/(5) = (u () + Ddls) )2 + 1)ds,
0

2

Wy + I) ((_7152 + ) — st + %)(w;"(s) + W (W () — (W(s))* + 1)ds

vV, =

12
+ f ((%n—%)r )Wy (s) + wals)wy/(s) = (W(5))* + l)d]

2

+ ft((_—ls2 + $)7 — st + S—)
0o v 2 2
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X ((wn - fo G, 90 (5) + W (5) — (W) + n)”
+ (wn + fo G, 909 + W) — O+ D)

x (w, + fo G, 90 () + W) — Oui) + D)’
— ((wn + fo G, 90 (5) + W] (5) — () + D))+ 1)ds
+ f | ((_752 +s- %)zz)((wn ¥ fo Gl 0N () + (W (5) — L) + n)”
+ (wa + fo G, ;' (5) + wa(s)W(5) = (wy())° + 1)

x (w, + fo Gl () W) — () D)’
—((wn + fo G, 90 (5) + W] (5) — () + D))+ 1)ds,

. :[(1 — @) wa + f[ ((_71s2 + )7 — st + %2)
0

X (W) (5) + wa(s)w)/(s) = (wy () + 1)ds

—52

[ 5 D)o+ w9~ o7+ )]
2

+ w,,[vn + f: ((_71s2 + $)1* — st + s2 )(v"'(s) + V(s (8) = (V(8))* + l)ds

o [ o= DN om0 - i+ ]

+ft((_1 24 9P t+s2)
- S -8 -
, 3 2

X (((1 — @) + f 1 G(t, )W)/ (5) + wa( W/ (5) = (Wy(5)) + 1)ds]

—

+w,, v, + f G, s)(v'”(s)+vn(s)v"(s) V. (5)) +1)ds])

1
((l—wn)[wn+ f G(t, s) w"’(s)+wn(s)w”(s) W' (s))? +1)ds]
1

G, s) v”’(s)+vn(s)v"(s) V. (5)) +1)ds])

+wn Vo +

S—

x (1= &)|w + f 1 G(t, )Wy (5) + wa(IW,/(5) = (W(5))? + 1)ds]
0
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+ @ [v, + f 1 G(t.5)(vy/ () + va(sVy (5) = (9)* + 1)ds])”

0

— (1 = @) [w. + f 1 G(t. )W)/ (5) + wa( W/ (5) = (Wy(5))? + 1)ds]
0

1 ) ., o ) ;2 )
+ @[V + fo G(t, )(v)/'(5) + va(s)V/(5) = V() + 1)ds]|) ) +1|ds.

With the right choice of @,, &, € [0, 1] and by considering the minimization of the L?>-norm of the
residual error, a better computation is achieved. The initial iterate uy = O satisfies the homogeneous
equation #’” = L[u] = 0 and the accompanying boundary conditions.

Our iterative scheme, Modified-JK-Green (5.9) converges faster than Picard-Green [25,26], Mann-
Green [27], Khan-Green [28], and Ishikawa-Green [29] iterative schemes.

6. Conclusions

We have been able to show that our new iterative scheme (2.6) converges faster than all of JK, Mann,
Picard-Ishikawa, GA, Noor, and CR iterative schemes for Example 1, as shown in Tables 1 and 2 and
Figures 1 and 2, which indicates that the mapping converges to a fixed point 5 € .Z(J). A result
on using our scheme to find the solution of a delay differential equation was proved in a uniformly
convex Banach space. Also, our scheme formulated in terms of the Green function and defined as the
Modified-JK-Green iterative scheme was used to approximate the solution of a third order BVP with
examples shown in Example 2.
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