In this paper our aim is to study some valuable problems dealing with newly defined subclass of multivalent $ q $-starlike functions. These problems include the initial coefficient estimates, Toeplitz matrices, Hankel determinant, Fekete-Szego problem, upper bounds of the functional $ \left \vert a_{p+1}-\mu a_{p+1}^{2}\right \vert $ for the subclass of multivalent $ q $-starlike functions. As applications we study a $ q $-Bernardi integral operator for a subclass of multivalent $ q $-starlike functions. Furthermore, we also highlight some known consequence of our main results.
Citation: Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan. Hankel and Toeplitz determinant for a subclass of multivalent $ q $-starlike functions of order $ \alpha $[J]. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320
In this paper our aim is to study some valuable problems dealing with newly defined subclass of multivalent $ q $-starlike functions. These problems include the initial coefficient estimates, Toeplitz matrices, Hankel determinant, Fekete-Szego problem, upper bounds of the functional $ \left \vert a_{p+1}-\mu a_{p+1}^{2}\right \vert $ for the subclass of multivalent $ q $-starlike functions. As applications we study a $ q $-Bernardi integral operator for a subclass of multivalent $ q $-starlike functions. Furthermore, we also highlight some known consequence of our main results.
[1] | Q. Z. Ahmad, N. Khan, M. Raza, M. Tahir, B. Khan, Certain $q$-difference operators and their applications to the subclass of meromorphic $q$-starlike functions, Filomat, 33 (2019), 3385–3397. doi: 10.2298/FIL1911385A |
[2] | M. F. Ali, D. K. Thomas, A. Vasudevarao, Toeplitz determinants whose element are the coefficients of univalent functions, Bull. Aust. Math. Soc., 97 (2018), 253–264. doi: 10.1017/S0004972717001174 |
[3] | M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, S. A. Khan, Some Janowski type harmonic $q$-starlike functions associated with symmetrical points, Mathematics, 8 (2020), 629. doi: 10.3390/math8040629 |
[4] | M. Arif, H. M. Srivastava, S. Uma, Some applications of a $q$ -analogue of the Ruscheweyh type operator for multivalent functions, Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM), 113 (2019), 1211–1221. |
[5] | K. O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of univalent functions, Inequal. Theory Appl., 6 (2007), 1–7. |
[6] | S. D. Bernardi, Convex and starlike univalent functions, Trans. Am. Math. Soc., 135 (1969), 429–446. doi: 10.1090/S0002-9947-1969-0232920-2 |
[7] | C. Charlier, A. Deano, Asymptotics for Hankel determinants associated to a Hermite weight with a varying discontinuity, SIGMA, 14 (2018), 018. |
[8] | P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Springer: New York, NY, USA, 1983. |
[9] | I. Efraimidis, A generalization of Livingston's coefficient inequalities for functions with positive real part, J. Math. Anal. Appl., 435 (2016), 369–379. doi: 10.1016/j.jmaa.2015.10.050 |
[10] | G. Gasper, M. Rahman, Basic Hpergeometric series, vol. 35 of Encyclopedia of Mathematics and its applications, Ellis Horwood, Chichester, UK, 1990. |
[11] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. |
[12] | T. Hayami, S. Owa, Hankel determinant for $p$-valently starlike and convex functions of order $\alpha, $ Gen. Math., 17 (2009), 29–44. |
[13] | S. Hussain, S. Khan, G. Roqia, M. Darus, Hankel Determinant for certain classes of analytic functions, J. Comput. Theoret. Nanosci., 13 (2016), 9105–9110. doi: 10.1166/jctn.2016.6288 |
[14] | F. H. Jackson, On $q$-functions and a certain difference operator, Trans. R. Soc. Edinburgh, 46 (1908), 253–281. |
[15] | F. H. Jackson, On $q$-definite integrals, Pure Appl. Math. Q., 41 (1910), 193–203. |
[16] | A. Janteng, A. S. Halim, M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 2007 (2007), 619–625. |
[17] | S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. |
[18] | Q. Khan, M. Arif, M. Raza, G. Srivastava, H. Tang, Some applications of a new integral operator in $q$-analog for multivalent functions, Mathematics, 7 (2019), 1–13. |
[19] | B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent $q$-starlike functions involving higher-order $q$-Derivatives, Mathematics, 8 (2020), 1470. doi: 10.3390/math8091470 |
[20] | B. Khan, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, Q. Z. Ahmad, Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain, Mathematics, 8 (2020), 1334. doi: 10.3390/math8081334 |
[21] | B. Khan, H. M Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad, N. Khan, Applications of a certain -integral operator to the subclasses of analytic and bi-univalent functions, AIMS Math., 6 (2020), 1024–1039. |
[22] | N. Khan, M. Shafiq, M. Darus, B. Khan, Q. Z. Ahmad, Upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with Lemniscate of Bernoulli, J. Math. Inequal., 14 (2020), 51–63. |
[23] | S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of $q$ -Starlike functions, Symmetry, 11 (2019), 347. doi: 10.3390/sym11030347 |
[24] | S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically $q$-starlike functions associated with the Janowski functions, J. Inequal. Appl., 2019 (2019), 88. doi: 10.1186/s13660-019-2020-z |
[25] | S. Mahmood, M. Raza, E. S. AbuJarad, G. Srivastava, H. M. Srivastava, S. N. Malik, Geometric properties of certain classes of analytic functions associated with a $q$-integral operator, Symmetry, 11 (2019), 1–14. |
[26] | C. Min, Y. Chen, Painlevé V and the Hankel determinant for a singularly perturbed Jacobi weight, Nucl. Phys., 961 (2020), 115221. doi: 10.1016/j.nuclphysb.2020.115221 |
[27] | C. Min, Y. Chen, Painlevé VI, Painlevé III, and the Hankel determinant associated with a degenerate Jacobi unitary ensemble, Math. Methods Appl. Sci., 43 (2020), 9169–9184. doi: 10.1002/mma.6609 |
[28] | C. Min, Y. Chen, Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight, Math. Methods Appl. Sci., 42 (2019), 301–321. doi: 10.1002/mma.5347 |
[29] | J. W. Noonan, D. K. Thomas, On the second Hankel derminant of areally mean $p$-valent functions, Trans. Am. Math. Soc., 233 (1976), 337–346. |
[30] | K. I. Noor, S. Riaz, M. A. Noor, On $q$-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. |
[31] | M. S. Rehman, Q. Z. Ahmad, H. M. Srivastava, B. Khan, N. Khan, Partial sums of generalized $q$-Mittag-Leffler functions, AIMS Math., 5 (2019), 408–420. |
[32] | M. S. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B Khan, Applications of higher-order $q$-derivatives to the subclass of $q$-starlike functions associated with the Janowski functions, AIMS Math., 6 (2020), 1110–1125. |
[33] | M. S. Rehman, Q. Z. Ahmad, B. Khan, M. Tahir, N. Khan, Generalisation of certain subclasses of analytic and univalent functions, Maejo Int. J. Sci. Technol., 13 (2019), 1–9. |
[34] | M. Shafiq, N. Khan, H. M. Srivastava, B. Khan, Q. Z. Ahmad, M. Tahir, Generalisation of close-to-convex functions associated with Janowski functions, Maejo Int. J. Sci. Technol., 14 (2020), 141–155. |
[35] | L. Shi, Q. Khan, G. Srivastava, J. L. Liu, M. Arif, A study of multivalent $q$-starlike functions connected with circular domain, Mathematics, 7 (2019), 670. doi: 10.3390/math7080670 |
[36] | G. Singh, On the second Hankel determinant for a new subclass of analytic functions, J. Math. Sci. Appl., 2 (2014), 1–3. doi: 10.11648/j.sjams.20140201.11 |
[37] | H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: H. M. Srivastava, S. Owa, Editors, Univalent Functions$, $ Fractional Calculus$, $ and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989,329–354. |
[38] | H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran J. Sci. Technol. Trans. A: Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0 |
[39] | H. M. Srivastava, M. K. Aouf, A. O. Mostafa, Some properties of analytic functions associated with fractional $q$-calculus operators, Miskolc Math. Notes, 20 (2019), 1245–1260. doi: 10.18514/MMN.2019.3046 |
[40] | H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain $q$-integral operator, Stud. Univ. Babes-Bolyai Math., 63 (2018), 419–436. doi: 10.24193/subbmath.2018.4.01 |
[41] | H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for $q$-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425. doi: 10.14492/hokmj/1562810517 |
[42] | H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 2325–2346. doi: 10.1216/RMJ-2019-49-7-2325 |
[43] | H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third Hankel determinant for a subclass of $q$-starlike functions associated with the $q$-exponential function, Bull. Sci. Math., 167 (2021), 102942. doi: 10.1016/j.bulsci.2020.102942 |
[44] | H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szegö type problems and their applications for a subclass of $q$-starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 842. doi: 10.3390/math8050842 |
[45] | H. M. Srivastava, M. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad. Fekete-Szegö inequality for classes of ($p, q$)-starlike and ($p, q$)-convex functions, Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM), 113 (2019), 3563–3584. |
[46] | H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14. |
[47] | H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of $q$-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613–2626. doi: 10.2298/FIL1909613S |
[48] | Z. G. Wang, M. Raza, M. Ayaz, M. Arif, On certain multivalent functions involving the generalized Srivastava-Attiya operator, J. Nonlinear Sci. Appl., 9 (2016), 6067–6076. doi: 10.22436/jnsa.009.12.14 |
[49] | X. B. Wu, S. X. Xu, Y. Q. Zhao, Gaussian unitary ensemble with boundary spectrum singularity and sigma-form of the Painlevé II equation, Stud. Appl. Math., 140 (2018), 221–251. doi: 10.1111/sapm.12197 |
[50] | X. Zhang, S. Khan, S. Hussain, H. Tang, Z. Shareef, New subclass of $q$-starlike functions associated with generalized conic domain, AIMS Math., 5 (2020), 4830–4848. doi: 10.3934/math.2020308 |