Research article

Characterizations of Euclidean spheres

  • Received: 22 March 2021 Accepted: 10 May 2021 Published: 14 May 2021
  • MSC : 53C20, 53A30

  • We use the tangential component $ \psi ^{T} $ of an immersion of a compact hypersurface of the Euclidean space $ \mathbf{E}^{m+1} $ in finding two characterizations of a sphere. In first characterization, we use $ \psi ^{T} $ as a geodesic vector field (vector field with all its trajectories geodesics) and in the second characterization, we use $ \psi ^{T} $ to annihilate the de-Rham Laplace operator on the hypersurface.

    Citation: Sharief Deshmukh, Mohammed Guediri. Characterizations of Euclidean spheres[J]. AIMS Mathematics, 2021, 6(7): 7733-7740. doi: 10.3934/math.2021449

    Related Papers:

  • We use the tangential component $ \psi ^{T} $ of an immersion of a compact hypersurface of the Euclidean space $ \mathbf{E}^{m+1} $ in finding two characterizations of a sphere. In first characterization, we use $ \psi ^{T} $ as a geodesic vector field (vector field with all its trajectories geodesics) and in the second characterization, we use $ \psi ^{T} $ to annihilate the de-Rham Laplace operator on the hypersurface.



    加载中


    [1] B. Y. Chen, O. J. Garay, Constant mean curvature hypersurfaces with constant $\delta $-invariant, Int. J. Math. Math. Sci., 67 (2003), 4205-4216.
    [2] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1983.
    [3] B. Y. Chen, Constant ratio hypersurfaces, Soochow J. Math., 27 (2001), 353-362.
    [4] C. Chen, H. Sun, L. Tang, On translation hypersurfaces with constant mean curvature in (n + 1)-dimensional spaces, J. Beijing Inst. Technol., 12 (2003), 322-325.
    [5] S. Deshmukh, Compact hypersurfaces in a Euclidean space, Q. J. Math., 49 (1998), 35-41. doi: 10.1093/qmathj/49.1.35
    [6] S. Deshmukh, A note on Euclidean spheres, Balkan J. Geom. Appl., 11 (2006), 44-49.
    [7] S. Deshmukh, Real hypersurfaces in a Euclidean complex space form, Q. J. Math., 58 (2007), 313-317. doi: 10.1093/qmath/ham015
    [8] S. Deshmukh, A note on compact hypersurfaces in a Euclidean space, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 971-974. doi: 10.1016/j.crma.2012.10.027
    [9] S. Deshmukh, A Note on hypersurfaces of a Euclidean space, C. R. Acad. Sci. Paris, Ser. I, 351 (2013), 631-634. doi: 10.1016/j.crma.2013.09.003
    [10] S. Deshmukh, V. A. Khan, Geodesic vector fields and Eikonal equation on a Riemannian manifold, Indag. Math., 30 (2019), 542-552. doi: 10.1016/j.indag.2019.02.001
    [11] K. L. Duggal, R. Sharma, Symmetries of Spacetimes and Riemannian Manifolds, Springer Science+Busisness Media B. V., 1999.
    [12] F. Erkekoglu, E. García-Río, D. N. Kupeli, B. Ünal, Characterizing specific Riemannian manifolds by differential equations, Acta Appl. Math., 76 (2003), 195-219. doi: 10.1023/A:1022987819448
    [13] E. García-Río, D. N. Kupeli, B. Ünal, Some conditions for Riemannian manifolds to be isometric with Euclidean spheres, J. Differ. Equation, 194 (2003), 287-299. doi: 10.1016/S0022-0396(03)00173-6
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1988) PDF downloads(110) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog