We use the tangential component $ \psi ^{T} $ of an immersion of a compact hypersurface of the Euclidean space $ \mathbf{E}^{m+1} $ in finding two characterizations of a sphere. In first characterization, we use $ \psi ^{T} $ as a geodesic vector field (vector field with all its trajectories geodesics) and in the second characterization, we use $ \psi ^{T} $ to annihilate the de-Rham Laplace operator on the hypersurface.
Citation: Sharief Deshmukh, Mohammed Guediri. Characterizations of Euclidean spheres[J]. AIMS Mathematics, 2021, 6(7): 7733-7740. doi: 10.3934/math.2021449
We use the tangential component $ \psi ^{T} $ of an immersion of a compact hypersurface of the Euclidean space $ \mathbf{E}^{m+1} $ in finding two characterizations of a sphere. In first characterization, we use $ \psi ^{T} $ as a geodesic vector field (vector field with all its trajectories geodesics) and in the second characterization, we use $ \psi ^{T} $ to annihilate the de-Rham Laplace operator on the hypersurface.
[1] | B. Y. Chen, O. J. Garay, Constant mean curvature hypersurfaces with constant $\delta $-invariant, Int. J. Math. Math. Sci., 67 (2003), 4205-4216. |
[2] | B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1983. |
[3] | B. Y. Chen, Constant ratio hypersurfaces, Soochow J. Math., 27 (2001), 353-362. |
[4] | C. Chen, H. Sun, L. Tang, On translation hypersurfaces with constant mean curvature in (n + 1)-dimensional spaces, J. Beijing Inst. Technol., 12 (2003), 322-325. |
[5] | S. Deshmukh, Compact hypersurfaces in a Euclidean space, Q. J. Math., 49 (1998), 35-41. doi: 10.1093/qmathj/49.1.35 |
[6] | S. Deshmukh, A note on Euclidean spheres, Balkan J. Geom. Appl., 11 (2006), 44-49. |
[7] | S. Deshmukh, Real hypersurfaces in a Euclidean complex space form, Q. J. Math., 58 (2007), 313-317. doi: 10.1093/qmath/ham015 |
[8] | S. Deshmukh, A note on compact hypersurfaces in a Euclidean space, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 971-974. doi: 10.1016/j.crma.2012.10.027 |
[9] | S. Deshmukh, A Note on hypersurfaces of a Euclidean space, C. R. Acad. Sci. Paris, Ser. I, 351 (2013), 631-634. doi: 10.1016/j.crma.2013.09.003 |
[10] | S. Deshmukh, V. A. Khan, Geodesic vector fields and Eikonal equation on a Riemannian manifold, Indag. Math., 30 (2019), 542-552. doi: 10.1016/j.indag.2019.02.001 |
[11] | K. L. Duggal, R. Sharma, Symmetries of Spacetimes and Riemannian Manifolds, Springer Science+Busisness Media B. V., 1999. |
[12] | F. Erkekoglu, E. García-Río, D. N. Kupeli, B. Ünal, Characterizing specific Riemannian manifolds by differential equations, Acta Appl. Math., 76 (2003), 195-219. doi: 10.1023/A:1022987819448 |
[13] | E. García-Río, D. N. Kupeli, B. Ünal, Some conditions for Riemannian manifolds to be isometric with Euclidean spheres, J. Differ. Equation, 194 (2003), 287-299. doi: 10.1016/S0022-0396(03)00173-6 |