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Abstract: We use the tangential component ψT of an immersion of a compact hypersurface of
the Euclidean space Em+1 in finding two characterizations of a sphere. In first characterization, we
use ψT as a geodesic vector field (vector field with all its trajectories geodesics) and in the second
characterization, we use ψT to annihilate the de-Rham Laplace operator on the hypersurface.
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1. Introduction

Geometry of hypersurfaces of a Riemannian manifold is one of the important branches of
differential geometry. In that, one of important questions is characterizing spheres among compact
hypersurfaces of a Euclidean space [1,3–8]. On a Riemannian manifold (M, g), the Ricci operator S is
defined using Ricci tensor Ric, namely Ric(X,Y) = g(S X,Y), X ∈ X(M), where X(M) is the Lie
algebra of smooth vector fields on M. Similarly, the rough Laplace operator on the Riemannian
manifold (M, g), ∆ : X(M)→ X(M) is defined by

∆X =

m∑
i=1

(
∇ei∇ei X − ∇∇ei ei X

)
, X ∈ X(M), (1.1)

where ∇ is the Riemannian connection and {e1, ..., em} is a local orthonormal frame on M, m = dim M.
Rough Laplace operator is used in finding characterizations of spheres as well as of Euclidean spaces
[11,12]. Recall that de-Rham Laplace operator � : X(M)→ X(M) on a Riemannian manifold (M, g) is
defined by ( [10], p83)

� = S + ∆ (1.2)
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and is used to characterize a Killing vector field on a compact Riemannian manifold. Recall that a
vector field u on a Riemannian manifold (M, g) is said to be a geodesic vector field [9] if

∇uu = 0. (1.3)

Let M be an orientable immersed hypersurface of the Euclidean space and ψ : M → Em+1 be
the immersion. We denote the unit normal to the hypersurface M by ξ and support function of the
hypersurface by σ defined by σ = 〈ψ, ξ〉, where 〈, 〉 is the Euclidean metric on Em+1. Then treating ψ
as position vector field of the hypersurface M, we have ψ = ψT + σξ.

Consider the sphere Sm(c) of constant curvature c as hypersurface of the Euclidean space Em+1 with
unit normal ξ and shape operator A = −

√
cI. Now, consider the embedding ψ : Sm(c) → Em+1. Then

it follows that the tangential component ψT for the sphere Sm(c) satisfies �ψT = 0 as well as ψT is a
geodesic vector field. These raise two questions: (i) Under what condition on a compact hypersurface
M of a Euclidean space Em+1 with immersion ψ : M → Em+1 such that ψT is a geodesic vector field,
M is isometric to a sphere? (ii) Under what conditions on a compact hypersurface M of a Euclidean
space Em+1 with immersion ψ : M → Em+1 such that ψT satisfying �ψT = 0, M is isometric to a
sphere? In this paper, we answer these questions, for first question by showing that under the condition
Ric

(
ψT , ψT

)
≥ m−1

m

(
div ψT

)2
the hypersurface is isometric to a sphere, where as for the second question,

it requires the condition |σα| ≤ 1, where α is the mean curvature (Theorem 3.1 and Theorem 3.2).

2. Preliminaries

Let M be an orientable immersed hypersurface of of the Euclidean space Em+1 with immersion
ψ : M → Em+1 with unit normal ξ and shape operator A. Then we have the following Gauss-Weingarten
formulae

DXY = ∇XY + g (AX,Y) ξ, DXξ = −AX, X,Y ∈ X(M), (2.1)

where D, ∇ are Riemannian connections on Em+1, M respectively, g is the induced metric on M and
X(M) is the Lie algebra of smooth vector fields on M. The curvature tensor field R and the Ricci
curvature Ric of the hypersurface are given by

R(X,Y)Z = g(AY,Z)AX − g(AX, X)AY , X,Y,Z ∈ X(M) (2.2)

and
Ric(X,Y) = mαg(AX,Y) − g(AX, AY), X,Y ∈ X(M), (2.3)

where, α = 1
mTr.A is the mean curvature of the hypersurface [2]. Using Eq (2.3), we see that the Ricci

operator S of the hypersurface M is given by

S (X) = mαAX − A2X, X ∈ X(M) (2.4)

Also, as the Euclidean space Em+1 is space of constant curvature, the Codazzi equation for the
hypersurface M is

(∇A) (X,Y) = (∇A) (Y, X), X,Y ∈ X(M), (2.5)
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where (∇A) (X,Y) = ∇XAY − A (∇XY). Using Eq (2.5) and symmetry of the shape operator A, the
gradient grad α of the mean curvature α is given by

grad α =
1
m

m∑
i=1

(∇A) (ei, ei), (2.6)

where {e1, ...en} is a local orthonormal frame on M.
Let ψT be the tangential component of the immersion ψ : M → Em+1 and σ = 〈ψ, ξ〉 be the support

function of the hypersurface M. Then, we have ψ = ψT + σξ and using Eq (2.1), we get

∇Xψ
T = X + σAX, grad σ = −AψT , X ∈ X(M). (2.7)

Using above equation, we have
div ψT = m(1 + σα). (2.8)

Thus, for a compact hypersurface M of the Euclidean space Em, on integrating the above equation, we
have the following Minkowski’s formula ∫

M

(1 + σα) = 0. (2.9)

On a compact Riemannian manifold (M, g), the Laplace operator ∆ acting on a smooth function h :
M → R is defined by ∆h = div

(
grad h

)
and the Hessian operator Hh for the smooth function h is a

symmetric operator defined by

Hh(X) = ∇Xgrad h, X ∈ X(M).

On a compact Riemannian manifold (M, g), we have the following formula known as Bochner’s
formula ∫

M

Ric
(
grad h, grad h

)
=

∫
M

(
(∆h)2

− ‖Hh‖
2
)

. (2.10)

On the other hand, given a Riemannian manifold (M, g) and a vector field X ∈ X(M),, we let θX denote
the dual one form of X (that is, defined by θX (Y) = g (X,Y)) and AX be the (1, 1)-tensor (viewed as an
endomorphism) defined by

AX (Y) = ∇Y X

Write as usual
LXg (Y,Z) + dθX (Y,Z) = 2g (AX (Y) ,Z) ,

for all Y,Z ∈ X(M).
Let B and φ be the symmetric and anti-symmetric parts of AX. In other words, we have

LXg (Y,Z) = 2g (B (Y) ,Z)

dθX (Y,Z) = 2g (φ (Y) ,Z)

Now, formula ∇Xψ
T = X +σAX in Eq (2.7) is nothing but AψT = I +σA. It follows that B = I +σA

and φ = 0, and this implies that ψT is gradient.
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3. Characterizations of spheres

Let M be an orientable compact immersed hypersurface of the Euclidean space Em+1 with
immersion ψ : M → Em+1 and unit normal ξ, shape operator A. In this section, we answer the
questions raised in the introduction and find two new characterizations of the Euclidean spheres.

Theorem 1. Let ψ : M → Em+1 be an immersion of a compact simply connected hypersurface with
ψT a non-trivial geodesic vector field, m ≥ 2. Then the Ricci curvature satisfies

Ric
(
ψT , ψT

)
≥

m − 1
m

(
divψT

)2
,

if and only if, the mean curvature α is a constant, ψT is a non-homothetic conformal vector field, and
M is isometric to the sphere Sm

(
α2

)
.

Proof. Suppose ψT is a geodesic vector field and the Ricci curvature of the hypersurface M satisfies

Ric
(
ψT , ψT

)
≥

m − 1
m

(
div ψT

)2
. (3.1)

Then, using Eqs (1.3) and (2.7), we have σAψT = −ψT . Taking covariant derivative with respect to
X ∈ X(M) in this equation and using Eq (2.7), we get

X (σ) AψT + σ (∇A) (X, ψT ) + σA (X + σAX) = −X − σAX,

that is
σ (∇A) (X, ψT ) = −X (σ) AψT − X − 2σAX − σ2A2X, X ∈ X(M).

Now, for a local orthonormal frame {e1, ..., em} on M, choosing X = ei in above equation and taking
the inner product with ei in above equation and summing the resulting equation, we conclude

mσψT (α) = −g
(
AψT , grad σ

)
− m − 2mσα − σ2 ‖A‖2 ,

where we used symmetry of the shape operator A and Eq (2.6). Now, using Eq (2.7) in above equation,
we have

mσψT (α) =
∥∥∥AψT

∥∥∥2
− m − 2mσα − σ2 ‖A‖2 . (3.2)

Note that div
(
α
(
σψT

))
= σψT (α) + αdiv

(
σψT

)
and using Eqs (2.7), (2.8), we get

σψT (α) = div
(
α
(
σψT

))
+ αg

(
AψT , ψT

)
− mσα(1 + σα). (3.3)

Inserting the above equation in Eq (3.2) and using Eq (2.3), we conclude

Ric
(
ψT , ψT

)
− m2σα(1 + σα) + div

(
α
(
σψT

))
= −m − 2mσα − σ2 ‖A‖2 .

Integrating the above equation while using Minkowski’s formula (2.9), we have∫
M

(
Ric

(
ψT , ψT

)
+ m(m − 1) − m2σ2α2 + σ2 ‖A‖2

)
= 0,
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that is, ∫
M

(
Ric

(
ψT , ψT

)
− m(m − 1)

(
σ2α2 − 1

))
=

∫
M

σ2
(
mα2 − ‖A‖2

)
. (3.4)

Now, we use div ψT = m(1 + σα) and Eq (2.9), to arrive at∫
M

(
div ψT

)2
= m2

∫
M

(
1 + 2σα + σ2α2

)
= m2

∫
M

(
σ2α2 − 1

)
and inserting the above equation in Eq (3.4), we have∫

M

(
Ric

(
ψT , ψT

)
−

m − 1
m

(
div ψT

)2
)

=

∫
M

σ2
(
mα2 − ‖A‖2

)
. (3.5)

Using inequality (3.1) in Eq (3.5), we get∫
M

σ2
(
mα2 − ‖A‖2

)
≥ 0

and above inequality in view of the Schwart’s inequality ‖A‖2 ≥ mα2 implies

σ2
(
mα2 − ‖A‖2

)
= 0.

If σ = 0, then by Minkowski’s formula (2.9), we get a contradiction. Thus, we have ‖A‖2 = mα2

and this equality holds, if and only if, A = αI. In other words, M is shown to be totally umbilical.
Moreover, using A = αI, we have

(∇A) (X,Y) = X (α) Y ,

and we get
m∑

i=1

(∇A) (ei, ei) = grad α.

Using Eq (2.6), we get (m − 1)grad α = 0 and with restriction on dimension m, we conclude α is
a constant. Moreover, this constant α , 0 due to the fact that the Euclidean space does not have
a compact minimal hypersurface. Inserting A = αI in Eq (2.2), we see that the simply connected
hypersurface M has constant curvature α2 and M being compact, it is complete. Hence, M is complete
simply connected hypersurface of constant positive curvature α2 and is therefore isometric to the sphere
Sm(α2). Since B = (1 + σα) I, we get LψT g = 2 (1 + σα) g. In other words, ψT is a conformal vector
field which is non-homothetic, given that the function 1 + σα is not constant as ψT is supposed to be
non-trivial. The converse is trivial as ψT for the natural embedding ψ : Sm(α2) → Em+1 has ψT = 0,
which satisfies the hypothesis of the Theorem. �

Theorem 2. Let ψ : M → Em+1 be an immersion of a compact simply connected hypersurface with
�ψT = 0, m ≥ 2. Then the mean curvature α and support function σ satisfies

|σα| ≤ 1,

if and only if, the mean curvature α is a constant, ψT is a parallel vector field (i.e., the covariant
derivative of ψT vanishes), and M is isometric to the sphere Sm

(
α2

)
.
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Proof. Let M be a compact simply connected hypersurface of the Euclidean space Em+1 with �ψT = 0,
and

|σα| ≤ 1. (3.6)

We use Eqs (2.6) and (2.7) in computing ∆ψT , where ∆ is rough Laplace operator, and obtain

∆ψT = A
(
grad σ

)
+ mσgrad α.

Using Eq (2.7), we get
∆ψT = −A2

(
ψT

)
+ mσgrad α. (3.7)

Also, in view of Eq (2.4), we have

S
(
ψT

)
= mαA

(
ψT

)
− A2

(
ψT

)
. (3.8)

Now, using Eqs (1.2), (3.7) and (3.8), we conclude

�ψT = −2A2
(
ψT

)
+ mαA

(
ψT

)
+ mσgrad α

and taking the inner product in above equation with ψT and using �ψT = 0, we arrive at

mαg
(
AψT , ψT

)
− 2g

(
AψT , AψT

)
+ mσψT (α) = 0.

Using Eq (3.3), we conclude

2mαg
(
AψT , ψT

)
− 2

∥∥∥AψT
∥∥∥2

+ mdiv
(
α
(
σψT

))
− m2σα (1 + σα) = 0

and in view of Eq (2.3), we get

2Ric
(
ψT , ψT

)
+ mdiv

(
α
(
σψT

))
− m2σα (1 + σα) = 0.

Integrating the above equation, while using Eq (2.9), we get∫
M

(
2Ric

(
ψT , ψT

)
+ m2 − m2σ2α2

)
= 0. (3.9)

Define a smooth function h on the hypersurface M, by h = 1
2 ‖ψ‖

2, which has gradient grad h = ψT and
∆h = m(1 + σα). Also using Eq (2.7), the Hessian Hh is given by

Hh = I + σA. (3.10)

Thus, using Bochner’s formula (2.10), we have∫
M

Ric
(
ψT , ψT

)
=

∫
M

(
(∆h)2

− ‖Hh‖
2
)

=

∫
M

(
1
m

(∆h)2
− ‖Hh‖

2 +
m − 1

m
(∆h)2

)
.
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Inserting ∆h = m(1 + σα) in the last term of the right hand side of above equation, we have∫
M

(
1
m

(∆h)2
− ‖Hh‖

2
)

=

∫
M

(
Ric

(
ψT , ψT

)
− m(m − 1)(1 + σα)2

)
and using Eq (2.9), we get

2
∫
M

(
1
m

(∆h)2
− ‖Hh‖

2
)

=

∫
M

(
2Ric

(
ψT , ψT

)
− 2m(m − 1)(σ2α2 − 1)

)
. (3.11)

Combining Eqs (3.9) and (3.11), we arrive at

2
∫
M

(
1
m

(∆h)2
− ‖Hh‖

2
)

= m(m − 2)
∫
M

(
1 − σ2α2

)
.

Using Schwarz’ inequality ‖Hh‖
2
≥ 1

m (∆h)2 and inequality (3.6) with m ≥ 2, in above equation, we
conclude the equality ‖Hh‖

2 = 1
m (∆h)2 and this equality holds, if and only if

Hh =
∆h
m

I.

Now, using Eq (3.10) and ∆h = m(1 + σα) in above equation, we get

σ (A − αI) = 0.

If σ = 0, we get a contradiction by Eq (2.9). Thus, we get A = αI and following the proof of Theorem
3.1, we get M is isometric to the sphere Sn(α2). We also deduce that LψT g = 2 (1 + σα) g, with both σ
and α constants. It follows that 1 +σα = 0, since otherwise ψT becomes a homothetic vector field and
consequently M is isometric to the Euclidean space, a contradiction. Thus, ∇X = AψT = 0, that is ψT

is parallel. The converse is trivial as on Sm(α2) as hypersurface of the Euclidean space Em+1, we have
ψT = 0 and σ = − 1

α
, and |σα| = 1. �
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