Mathematics

Research article

Characterizations of Euclidean spheres

Sharief Deshmukh and Mohammed Guediri*

Department of Mathematics, College of Science, King Saud University, P. O. Box-2455, Riyadh 11451, Saudi Arabia

* Correspondence: Email: mguediri @ksu.edu.sa; Tel: +966114676473; Fax: +966114676512.

Abstract

We use the tangential component ψ^{T} of an immersion of a compact hypersurface of the Euclidean space \mathbf{E}^{m+1} in finding two characterizations of a sphere. In first characterization, we use ψ^{T} as a geodesic vector field (vector field with all its trajectories geodesics) and in the second characterization, we use ψ^{T} to annihilate the de-Rham Laplace operator on the hypersurface.

Keywords: geodesic vector field; de-Rham Laplace operator; support function; Euclidean space; sphere
Mathematics Subject Classification: 53C20, 53A30

1. Introduction

Geometry of hypersurfaces of a Riemannian manifold is one of the important branches of differential geometry. In that, one of important questions is characterizing spheres among compact hypersurfaces of a Euclidean space [1,3-8]. On a Riemannian manifold (M, g), the Ricci operator S is defined using Ricci tensor Ric, namely $\operatorname{Ric}(X, Y)=g(S X, Y), X \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M. Similarly, the rough Laplace operator on the Riemannian manifold $(M, g), \Delta: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ is defined by

$$
\begin{equation*}
\Delta X=\sum_{i=1}^{m}\left(\nabla_{e_{i}} \nabla_{e_{i}} X-\nabla_{\nabla_{e_{i}} e_{i}} X\right), \quad X \in \mathfrak{X}(M), \tag{1.1}
\end{equation*}
$$

where ∇ is the Riemannian connection and $\left\{e_{1}, \ldots, e_{m}\right\}$ is a local orthonormal frame on $M, m=\operatorname{dim} M$. Rough Laplace operator is used in finding characterizations of spheres as well as of Euclidean spaces [11,12]. Recall that de-Rham Laplace operator $\square: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ on a Riemannian manifold (M, g) is defined by ([10], p83)

$$
\begin{equation*}
\square=S+\Delta \tag{1.2}
\end{equation*}
$$

and is used to characterize a Killing vector field on a compact Riemannian manifold. Recall that a vector field \mathbf{u} on a Riemannian manifold (M, g) is said to be a geodesic vector field [9] if

$$
\begin{equation*}
\nabla_{\mathbf{u}} \mathbf{u}=0 . \tag{1.3}
\end{equation*}
$$

Let M be an orientable immersed hypersurface of the Euclidean space and $\psi: M \rightarrow \mathbf{E}^{m+1}$ be the immersion. We denote the unit normal to the hypersurface M by ξ and support function of the hypersurface by σ defined by $\sigma=\langle\psi, \xi\rangle$, where \langle,$\rangle is the Euclidean metric on \mathbf{E}^{m+1}$. Then treating ψ as position vector field of the hypersurface M, we have $\psi=\psi^{T}+\sigma \xi$.

Consider the sphere $\mathbf{S}^{m}(c)$ of constant curvature c as hypersurface of the Euclidean space \mathbf{E}^{m+1} with unit normal ξ and shape operator $A=-\sqrt{c} I$. Now, consider the embedding $\psi: \mathbf{S}^{m}(c) \rightarrow \mathbf{E}^{m+1}$. Then it follows that the tangential component ψ^{T} for the sphere $\mathbf{S}^{m}(c)$ satisfies $\square \psi^{T}=0$ as well as ψ^{T} is a geodesic vector field. These raise two questions: (i) Under what condition on a compact hypersurface M of a Euclidean space \mathbf{E}^{m+1} with immersion $\psi: M \rightarrow \mathbf{E}^{m+1}$ such that ψ^{T} is a geodesic vector field, M is isometric to a sphere? (ii) Under what conditions on a compact hypersurface M of a Euclidean space \mathbf{E}^{m+1} with immersion $\psi: M \rightarrow \mathbf{E}^{m+1}$ such that ψ^{T} satisfying $\square \psi^{T}=0, M$ is isometric to a sphere? In this paper, we answer these questions, for first question by showing that under the condition $\operatorname{Ric}\left(\psi^{T}, \psi^{T}\right) \geq \frac{m-1}{m}\left(\operatorname{div} \psi^{T}\right)^{2}$ the hypersurface is isometric to a sphere, where as for the second question, it requires the condition $|\sigma \alpha| \leq 1$, where α is the mean curvature (Theorem 3.1 and Theorem 3.2).

2. Preliminaries

Let M be an orientable immersed hypersurface of of the Euclidean space \mathbf{E}^{m+1} with immersion $\psi: M \rightarrow \mathbf{E}^{m+1}$ with unit normal ξ and shape operator A. Then we have the following Gauss-Weingarten formulae

$$
\begin{equation*}
D_{X} Y=\nabla_{X} Y+g(A X, Y) \xi, \quad D_{X} \xi=-A X, \quad X, Y \in \mathfrak{X}(M), \tag{2.1}
\end{equation*}
$$

where D, ∇ are Riemannian connections on \mathbf{E}^{m+1}, M respectively, g is the induced metric on M and $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M. The curvature tensor field R and the Ricci curvature Ric of the hypersurface are given by

$$
\begin{equation*}
R(X, Y) Z=g(A Y, Z) A X-g(A X, X) A Y, \quad X, Y, Z \in \mathfrak{Z}(M) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=m \alpha g(A X, Y)-g(A X, A Y), \quad X, Y \in \mathfrak{X}(M) \tag{2.3}
\end{equation*}
$$

where, $\alpha=\frac{1}{m} \operatorname{Tr}$.A is the mean curvature of the hypersurface [2]. Using Eq (2.3), we see that the Ricci operator S of the hypersurface M is given by

$$
\begin{equation*}
S(X)=m \alpha A X-A^{2} X, \quad X \in \mathfrak{Z}(M) \tag{2.4}
\end{equation*}
$$

Also, as the Euclidean space \mathbf{E}^{m+1} is space of constant curvature, the Codazzi equation for the hypersurface M is

$$
\begin{equation*}
(\nabla A)(X, Y)=(\nabla A)(Y, X), \quad X, Y \in \mathfrak{X}(M), \tag{2.5}
\end{equation*}
$$

where $(\nabla A)(X, Y)=\nabla_{X} A Y-A\left(\nabla_{X} Y\right)$. Using Eq (2.5) and symmetry of the shape operator A, the gradient $\operatorname{grad} \alpha$ of the mean curvature α is given by

$$
\begin{equation*}
\operatorname{grad} \alpha=\frac{1}{m} \sum_{i=1}^{m}(\nabla A)\left(e_{i}, e_{i}\right), \tag{2.6}
\end{equation*}
$$

where $\left\{e_{1}, \ldots e_{n}\right\}$ is a local orthonormal frame on M.
Let ψ^{T} be the tangential component of the immersion $\psi: M \rightarrow \mathbf{E}^{m+1}$ and $\sigma=\langle\psi, \xi\rangle$ be the support function of the hypersurface M. Then, we have $\psi=\psi^{T}+\sigma \xi$ and using Eq (2.1), we get

$$
\begin{equation*}
\nabla_{X} \psi^{T}=X+\sigma A X, \quad \operatorname{grad} \sigma=-A \psi^{T}, \quad X \in \mathfrak{X}(M) \tag{2.7}
\end{equation*}
$$

Using above equation, we have

$$
\begin{equation*}
\operatorname{div} \psi^{T}=m(1+\sigma \alpha) \tag{2.8}
\end{equation*}
$$

Thus, for a compact hypersurface M of the Euclidean space \mathbf{E}^{m}, on integrating the above equation, we have the following Minkowski's formula

$$
\begin{equation*}
\int_{M}(1+\sigma \alpha)=0 . \tag{2.9}
\end{equation*}
$$

On a compact Riemannian manifold (M, g), the Laplace operator Δ acting on a smooth function h : $M \rightarrow \mathbf{R}$ is defined by $\Delta h=\operatorname{div}(\operatorname{grad} h)$ and the Hessian operator H_{h} for the smooth function h is a symmetric operator defined by

$$
H_{h}(X)=\nabla_{X} \operatorname{grad} h, \quad X \in \mathfrak{X}(M)
$$

On a compact Riemannian manifold (M, g), we have the following formula known as Bochner's formula

$$
\begin{equation*}
\int_{M} R i c(\operatorname{grad} h, \operatorname{grad} h)=\int_{M}\left((\Delta h)^{2}-\left\|H_{h}\right\|^{2}\right) . \tag{2.10}
\end{equation*}
$$

On the other hand, given a Riemannian manifold (M, g) and a vector field $X \in \mathfrak{X}(M)$, we let θ_{X} denote the dual one form of X (that is, defined by $\theta_{X}(Y)=g(X, Y)$) and A_{X} be the (1,1)-tensor (viewed as an endomorphism) defined by

$$
A_{X}(Y)=\nabla_{Y} X
$$

Write as usual

$$
L_{X} g(Y, Z)+d \theta_{X}(Y, Z)=2 g\left(A_{X}(Y), Z\right)
$$

for all $Y, Z \in \mathfrak{X}(M)$.
Let B and ϕ be the symmetric and anti-symmetric parts of A_{X}. In other words, we have

$$
\begin{aligned}
L_{X} g(Y, Z) & =2 g(B(Y), Z) \\
d \theta_{X}(Y, Z) & =2 g(\phi(Y), Z)
\end{aligned}
$$

Now, formula $\nabla_{X} \psi^{T}=X+\sigma A X$ in Eq (2.7) is nothing but $A_{\psi^{T}}=I+\sigma A$. It follows that $B=I+\sigma A$ and $\phi=0$, and this implies that ψ^{T} is gradient.

3. Characterizations of spheres

Let M be an orientable compact immersed hypersurface of the Euclidean space \mathbf{E}^{m+1} with immersion $\psi: M \rightarrow \mathbf{E}^{m+1}$ and unit normal ξ, shape operator A. In this section, we answer the questions raised in the introduction and find two new characterizations of the Euclidean spheres.
Theorem 1. Let $\psi: M \rightarrow \mathbf{E}^{m+1}$ be an immersion of a compact simply connected hypersurface with ψ^{T} a non-trivial geodesic vector field, $m \geq 2$. Then the Ricci curvature satisfies

$$
\operatorname{Ric}\left(\psi^{T}, \psi^{T}\right) \geq \frac{m-1}{m}\left(\operatorname{div} \psi^{T}\right)^{2}
$$

if and only if, the mean curvature α is a constant, ψ^{T} is a non-homothetic conformal vector field, and M is isometric to the sphere $\mathbf{S}^{m}\left(\alpha^{2}\right)$.

Proof. Suppose ψ^{T} is a geodesic vector field and the Ricci curvature of the hypersurface M satisfies

$$
\begin{equation*}
\operatorname{Ric}\left(\psi^{T}, \psi^{T}\right) \geq \frac{m-1}{m}\left(\operatorname{div} \psi^{T}\right)^{2} \tag{3.1}
\end{equation*}
$$

Then, using Eqs (1.3) and (2.7), we have $\sigma A \psi^{T}=-\psi^{T}$. Taking covariant derivative with respect to $X \in \mathfrak{X}(M)$ in this equation and using Eq (2.7), we get

$$
X(\sigma) A \psi^{T}+\sigma(\nabla A)\left(X, \psi^{T}\right)+\sigma A(X+\sigma A X)=-X-\sigma A X
$$

that is

$$
\sigma(\nabla A)\left(X, \psi^{T}\right)=-X(\sigma) A \psi^{T}-X-2 \sigma A X-\sigma^{2} A^{2} X, \quad X \in \mathfrak{X}(M) .
$$

Now, for a local orthonormal frame $\left\{e_{1}, \ldots, e_{m}\right\}$ on M, choosing $X=e_{i}$ in above equation and taking the inner product with e_{i} in above equation and summing the resulting equation, we conclude

$$
m \sigma \psi^{T}(\alpha)=-g\left(A \psi^{T}, \operatorname{grad} \sigma\right)-m-2 m \sigma \alpha-\sigma^{2}\|A\|^{2}
$$

where we used symmetry of the shape operator A and Eq (2.6). Now, using Eq (2.7) in above equation, we have

$$
\begin{equation*}
m \sigma \psi^{T}(\alpha)=\left\|A \psi^{T}\right\|^{2}-m-2 m \sigma \alpha-\sigma^{2}\|A\|^{2} . \tag{3.2}
\end{equation*}
$$

Note that $\operatorname{div}\left(\alpha\left(\sigma \psi^{T}\right)\right)=\sigma \psi^{T}(\alpha)+\alpha \operatorname{div}\left(\sigma \psi^{T}\right)$ and using Eqs (2.7), (2.8), we get

$$
\begin{equation*}
\sigma \psi^{T}(\alpha)=\operatorname{div}\left(\alpha\left(\sigma \psi^{T}\right)\right)+\alpha g\left(A \psi^{T}, \psi^{T}\right)-m \sigma \alpha(1+\sigma \alpha) \tag{3.3}
\end{equation*}
$$

Inserting the above equation in Eq (3.2) and using Eq (2.3), we conclude

$$
\operatorname{Ric}\left(\psi^{T}, \psi^{T}\right)-m^{2} \sigma \alpha(1+\sigma \alpha)+\operatorname{div}\left(\alpha\left(\sigma \psi^{T}\right)\right)=-m-2 m \sigma \alpha-\sigma^{2}\|A\|^{2}
$$

Integrating the above equation while using Minkowski's formula (2.9), we have

$$
\int_{M}\left(\operatorname{Ric}\left(\psi^{T}, \psi^{T}\right)+m(m-1)-m^{2} \sigma^{2} \alpha^{2}+\sigma^{2}\|A\|^{2}\right)=0
$$

that is,

$$
\begin{equation*}
\int_{M}\left(\operatorname{Ric}\left(\psi^{T}, \psi^{T}\right)-m(m-1)\left(\sigma^{2} \alpha^{2}-1\right)\right)=\int_{M} \sigma^{2}\left(m \alpha^{2}-\|A\|^{2}\right) . \tag{3.4}
\end{equation*}
$$

Now, we use $\operatorname{div} \psi^{T}=m(1+\sigma \alpha)$ and Eq (2.9), to arrive at

$$
\int_{M}\left(\operatorname{div} \psi^{T}\right)^{2}=m^{2} \int_{M}\left(1+2 \sigma \alpha+\sigma^{2} \alpha^{2}\right)=m^{2} \int_{M}\left(\sigma^{2} \alpha^{2}-1\right)
$$

and inserting the above equation in Eq (3.4), we have

$$
\begin{equation*}
\int_{M}\left(\operatorname{Ric}\left(\psi^{T}, \psi^{T}\right)-\frac{m-1}{m}\left(\operatorname{div} \psi^{T}\right)^{2}\right)=\int_{M} \sigma^{2}\left(m \alpha^{2}-\|A\|^{2}\right) . \tag{3.5}
\end{equation*}
$$

Using inequality (3.1) in Eq (3.5), we get

$$
\int_{M} \sigma^{2}\left(m \alpha^{2}-\|A\|^{2}\right) \geq 0
$$

and above inequality in view of the Schwart's inequality $\|A\|^{2} \geq m \alpha^{2}$ implies

$$
\sigma^{2}\left(m \alpha^{2}-\|A\|^{2}\right)=0
$$

If $\sigma=0$, then by Minkowski's formula (2.9), we get a contradiction. Thus, we have $\|A\|^{2}=m \alpha^{2}$ and this equality holds, if and only if, $A=\alpha I$. In other words, M is shown to be totally umbilical. Moreover, using $A=\alpha I$, we have

$$
(\nabla A)(X, Y)=X(\alpha) Y
$$

and we get

$$
\sum_{i=1}^{m}(\nabla A)\left(e_{i}, e_{i}\right)=\operatorname{grad} \alpha
$$

Using Eq (2.6), we get $(m-1) \operatorname{grad} \alpha=0$ and with restriction on dimension m, we conclude α is a constant. Moreover, this constant $\alpha \neq 0$ due to the fact that the Euclidean space does not have a compact minimal hypersurface. Inserting $A=\alpha I$ in Eq (2.2), we see that the simply connected hypersurface M has constant curvature α^{2} and M being compact, it is complete. Hence, M is complete simply connected hypersurface of constant positive curvature α^{2} and is therefore isometric to the sphere $\mathbf{S}^{m}\left(\alpha^{2}\right)$. Since $B=(1+\sigma \alpha) I$, we get $L_{\psi^{T}} g=2(1+\sigma \alpha) g$. In other words, ψ^{T} is a conformal vector field which is non-homothetic, given that the function $1+\sigma \alpha$ is not constant as ψ^{T} is supposed to be non-trivial. The converse is trivial as ψ^{T} for the natural embedding $\psi: \mathbf{S}^{m}\left(\alpha^{2}\right) \rightarrow \mathbf{E}^{m+1}$ has $\psi^{T}=0$, which satisfies the hypothesis of the Theorem.

Theorem 2. Let $\psi: M \rightarrow \mathbf{E}^{m+1}$ be an immersion of a compact simply connected hypersurface with $\square \psi^{T}=0, m \geq 2$. Then the mean curvature α and support function σ satisfies

$$
|\sigma \alpha| \leq 1,
$$

if and only if, the mean curvature α is a constant, ψ^{T} is a parallel vector field (i.e., the covariant derivative of ψ^{T} vanishes), and M is isometric to the sphere $\mathbf{S}^{m}\left(\alpha^{2}\right)$.

Proof. Let M be a compact simply connected hypersurface of the Euclidean space \mathbf{E}^{m+1} with $\square \psi^{T}=0$, and

$$
\begin{equation*}
|\sigma \alpha| \leq 1 \tag{3.6}
\end{equation*}
$$

We use Eqs (2.6) and (2.7) in computing $\Delta \psi^{T}$, where Δ is rough Laplace operator, and obtain

$$
\Delta \psi^{T}=A(\operatorname{grad} \sigma)+m \sigma \operatorname{grad} \alpha
$$

Using Eq (2.7), we get

$$
\begin{equation*}
\Delta \psi^{T}=-A^{2}\left(\psi^{T}\right)+m \sigma \operatorname{grad} \alpha . \tag{3.7}
\end{equation*}
$$

Also, in view of Eq (2.4), we have

$$
\begin{equation*}
S\left(\psi^{T}\right)=m \alpha A\left(\psi^{T}\right)-A^{2}\left(\psi^{T}\right) \tag{3.8}
\end{equation*}
$$

Now, using Eqs (1.2), (3.7) and (3.8), we conclude

$$
\square \psi^{T}=-2 A^{2}\left(\psi^{T}\right)+m \alpha A\left(\psi^{T}\right)+m \sigma \operatorname{grad} \alpha
$$

and taking the inner product in above equation with ψ^{T} and using $\square \psi^{T}=0$, we arrive at

$$
m \alpha g\left(A \psi^{T}, \psi^{T}\right)-2 g\left(A \psi^{T}, A \psi^{T}\right)+m \sigma \psi^{T}(\alpha)=0
$$

Using Eq (3.3), we conclude

$$
2 m \alpha g\left(A \psi^{T}, \psi^{T}\right)-2\left\|A \psi^{T}\right\|^{2}+m \operatorname{div}\left(\alpha\left(\sigma \psi^{T}\right)\right)-m^{2} \sigma \alpha(1+\sigma \alpha)=0
$$

and in view of Eq (2.3), we get

$$
2 R i c\left(\psi^{T}, \psi^{T}\right)+m \operatorname{div}\left(\alpha\left(\sigma \psi^{T}\right)\right)-m^{2} \sigma \alpha(1+\sigma \alpha)=0
$$

Integrating the above equation, while using Eq (2.9), we get

$$
\begin{equation*}
\int_{M}\left(2 \operatorname{Ric}\left(\psi^{T}, \psi^{T}\right)+m^{2}-m^{2} \sigma^{2} \alpha^{2}\right)=0 \tag{3.9}
\end{equation*}
$$

Define a smooth function h on the hypersurface M, by $h=\frac{1}{2}\|\psi\|^{2}$, which has gradient grad $h=\psi^{T}$ and $\Delta h=m(1+\sigma \alpha)$. Also using Eq (2.7), the Hessian H_{h} is given by

$$
\begin{equation*}
H_{h}=I+\sigma A . \tag{3.10}
\end{equation*}
$$

Thus, using Bochner's formula (2.10), we have

$$
\begin{aligned}
\int_{M} \operatorname{Ric}\left(\psi^{T}, \psi^{T}\right) & =\int_{M}\left((\Delta h)^{2}-\left\|H_{h}\right\|^{2}\right) \\
& =\int_{M}\left(\frac{1}{m}(\Delta h)^{2}-\left\|H_{h}\right\|^{2}+\frac{m-1}{m}(\Delta h)^{2}\right)
\end{aligned}
$$

Inserting $\Delta h=m(1+\sigma \alpha)$ in the last term of the right hand side of above equation, we have

$$
\int_{M}\left(\frac{1}{m}(\Delta h)^{2}-\left\|H_{h}\right\|^{2}\right)=\int_{M}\left(\operatorname{Ric}\left(\psi^{T}, \psi^{T}\right)-m(m-1)(1+\sigma \alpha)^{2}\right)
$$

and using Eq (2.9), we get

$$
\begin{equation*}
2 \int_{M}\left(\frac{1}{m}(\Delta h)^{2}-\left\|H_{h}\right\|^{2}\right)=\int_{M}\left(2 \operatorname{Ric}\left(\psi^{T}, \psi^{T}\right)-2 m(m-1)\left(\sigma^{2} \alpha^{2}-1\right)\right) . \tag{3.11}
\end{equation*}
$$

Combining Eqs (3.9) and (3.11), we arrive at

$$
2 \int_{M}\left(\frac{1}{m}(\Delta h)^{2}-\left\|H_{h}\right\|^{2}\right)=m(m-2) \int_{M}\left(1-\sigma^{2} \alpha^{2}\right) .
$$

Using Schwarz' inequality $\left\|H_{h}\right\|^{2} \geq \frac{1}{m}(\Delta h)^{2}$ and inequality (3.6) with $m \geq 2$, in above equation, we conclude the equality $\left\|H_{h}\right\|^{2}=\frac{1}{m}(\Delta h)^{2}$ and this equality holds, if and only if

$$
H_{h}=\frac{\Delta h}{m} I .
$$

Now, using Eq (3.10) and $\Delta h=m(1+\sigma \alpha)$ in above equation, we get

$$
\sigma(A-\alpha I)=0 .
$$

If $\sigma=0$, we get a contradiction by $\operatorname{Eq}(2.9)$. Thus, we get $A=\alpha I$ and following the proof of Theorem 3.1, we get M is isometric to the sphere $\mathbf{S}^{n}\left(\alpha^{2}\right)$. We also deduce that $L_{\psi^{T}} g=2(1+\sigma \alpha) g$, with both σ and α constants. It follows that $1+\sigma \alpha=0$, since otherwise ψ^{T} becomes a homothetic vector field and consequently M is isometric to the Euclidean space, a contradiction. Thus, $\nabla X=A_{\psi^{T}}=0$, that is ψ^{T} is parallel. The converse is trivial as on $\mathbf{S}^{m}\left(\alpha^{2}\right)$ as hypersurface of the Euclidean space \mathbf{E}^{m+1}, we have $\psi^{T}=0$ and $\sigma=-\frac{1}{\alpha}$, and $|\sigma \alpha|=1$.

Acknowledgments

This work was supported by NSTIP strategic technologies program number (13-MAT874-02) in the Kingdom of Saudi Arabia.

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. B. Y. Chen, O. J. Garay, Constant mean curvature hypersurfaces with constant δ-invariant, Int. J. Math. Math. Sci., 67 (2003), 4205-4216.
2. B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore, 1983.
3. B. Y. Chen, Constant ratio hypersurfaces, Soochow J. Math., 27 (2001), 353-362.
4. C. Chen, H. Sun, L. Tang, On translation hypersurfaces with constant mean curvature in ($\mathrm{n}+$ 1)-dimensional spaces, J. Beijing Inst. Technol., 12 (2003), 322-325.
5. S. Deshmukh, Compact hypersurfaces in a Euclidean space, Q. J. Math., 49 (1998), 35-41.
6. S. Deshmukh, A note on Euclidean spheres, Balkan J. Geom. Appl., 11 (2006), 44-49.
7. S. Deshmukh, Real hypersurfaces in a Euclidean complex space form, Q. J. Math., 58 (2007), 313-317.
8. S. Deshmukh, A note on compact hypersurfaces in a Euclidean space, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 971-974.
9. S. Deshmukh, A Note on hypersurfaces of a Euclidean space, C. R. Acad. Sci. Paris, Ser. I, 351 (2013), 631-634.
10. S. Deshmukh, V. A. Khan, Geodesic vector fields and Eikonal equation on a Riemannian manifold, Indag. Math., 30 (2019), 542-552.
11. K. L. Duggal, R. Sharma, Symmetries of Spacetimes and Riemannian Manifolds, Springer Science+Busisness Media B. V., 1999.
12. F. Erkekoglu, E. García-Río, D. N. Kupeli, B. Ünal, Characterizing specific Riemannian manifolds by differential equations, Acta Appl. Math., 76 (2003), 195-219.
13. E. García-Río, D. N. Kupeli, B. Ünal, Some conditions for Riemannian manifolds to be isometric with Euclidean spheres, J. Differ. Equation, 194 (2003), 287-299.

AIMS Press
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

