Research article Special Issues

Riemannian gradient descent for spherical area-preserving mappings

  • Received: 18 March 2024 Revised: 25 May 2024 Accepted: 05 June 2024 Published: 12 June 2024
  • MSC : 68U05, 65K10, 65D18, 65D19

  • We propose a new Riemannian gradient descent method for computing spherical area-preserving mappings of topological spheres using a Riemannian retraction-based framework with theoretically guaranteed convergence. The objective function is based on the stretch energy functional, and the minimization is constrained on a power manifold of unit spheres embedded in three-dimensional Euclidean space. Numerical experiments on several mesh models demonstrate the accuracy and stability of the proposed framework. Comparisons with three existing state-of-the-art methods for computing area-preserving mappings demonstrate that our algorithm is both competitive and more efficient. Finally, we present a concrete application to the problem of landmark-aligned surface registration of two brain models.

    Citation: Marco Sutti, Mei-Heng Yueh. Riemannian gradient descent for spherical area-preserving mappings[J]. AIMS Mathematics, 2024, 9(7): 19414-19445. doi: 10.3934/math.2024946

    Related Papers:

  • We propose a new Riemannian gradient descent method for computing spherical area-preserving mappings of topological spheres using a Riemannian retraction-based framework with theoretically guaranteed convergence. The objective function is based on the stretch energy functional, and the minimization is constrained on a power manifold of unit spheres embedded in three-dimensional Euclidean space. Numerical experiments on several mesh models demonstrate the accuracy and stability of the proposed framework. Comparisons with three existing state-of-the-art methods for computing area-preserving mappings demonstrate that our algorithm is both competitive and more efficient. Finally, we present a concrete application to the problem of landmark-aligned surface registration of two brain models.



    加载中


    [1] P. A. Absil, C. G. Baker, K. A. Gallivan, Trust-region methods on Riemannian manifolds, Found. Comput. Math., 7 (2007), 303–330. https://doi.org/10.1007/s10208-005-0179-9 doi: 10.1007/s10208-005-0179-9
    [2] P. A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008. https://doi.org/10.1515/9781400830244
    [3] P. A. Absil, J. Malick, Projection-like retractions on matrix manifolds, SIAM J. Optim., 22 (2012), 135–158. https://doi.org/10.1137/100802529 doi: 10.1137/100802529
    [4] S. Angenent, S. Haker, A. Tannenbaum, R. Kikinis, On the Laplace-Beltrami operator and brain surface flattening, IEEE Trans. Med. Imaging, 18 (1999), 700–711. https://doi.org/10.1109/42.796283 doi: 10.1109/42.796283
    [5] N. Boumal, An Introduction to Optimization on Smooth Manifolds, Cambridge University Press, 2023. https://doi.org/10.1017/9781009166164
    [6] G. P. T. Choi, B. Chiu, C. H. Rycroft, Area-Preserving Mapping of 3D Carotid Ultrasound Images Using Density-Equalizing Reference Map, IEEE. Trans. Biomed. Eng., 67 (2020), 2507–2517. https://doi.org/10.1109/TBME.2019.2963783 doi: 10.1109/TBME.2019.2963783
    [7] G. P. T. Choi, A. Giri, L. Kumar, Adaptive area-preserving parameterization of open and closed anatomical surfaces, Comput. Biol. Med., 148 (2022), 105715. https://doi.org/10.1016/j.compbiomed.2022.105715 doi: 10.1016/j.compbiomed.2022.105715
    [8] G. P. T. Choi, C. H. Rycroft, Density-equalizing maps for simply connected open surfaces, SIAM J. Imaging Sci., 11 (2018), 1134–1178. https://doi.org/10.1137/17M1124796 doi: 10.1137/17M1124796
    [9] P. T. Choi, K. C. Lam, L. M. Lui, FLASH: Fast landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces, SIAM J. Imaging Sci., 8 (2015), 67–94. https://doi.org/10.1137/130950008 doi: 10.1137/130950008
    [10] L. Cui, X. Qi, C. Wen, N. Lei, X. Li, M. Zhang, et al., Spherical optimal transportation, Comput. Aided Des., 115 (2019), 181–193. https://doi.org/10.1016/j.cad.2019.05.024 doi: 10.1016/j.cad.2019.05.024
    [11] J. E. Dennis Jr, R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, vol. 16 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. https://doi.org/10.1137/1.9781611971200
    [12] A. Edelman, T. A. Arias, S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), 303–353. https://doi.org/10.1137/S0895479895290954 doi: 10.1137/S0895479895290954
    [13] M. S. Floater, Mean value coordinates, Comput. Aided Geom. Des., 20 (2003), 19–27. https://doi.org/10.1016/S0167-8396(03)00002-5
    [14] D. Gabay, Minimizing a differentiable function over a differential manifold, J. Optim. Theory Appl., 37 (1982), 177–219. https://doi.org/10.1007/BF00934767 doi: 10.1007/BF00934767
    [15] D. G. Luenberger, Introduction to linear and nonlinear programming, vol. 28, Addison-Wesley Reading, MA, 1973.
    [16] J. Nocedal, S. J. Wright, Numerical Optimization, 2nd edition, Springer New York, NY, 2006. https://doi.org/10.1007/978-0-387-40065-5
    [17] W. Ring, B. Wirth, Optimization methods on {R}iemannian manifolds and their application to shape space, SIAM J. Optim., 22 (2012), 596–627. https://doi.org/10.1137/11082885X doi: 10.1137/11082885X
    [18] K. Su, L. Cui, K. Qian, N. Lei, J. Zhang, M. Zhang, et al., Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation, Comput. Aided Geom. Design, 46 (2016), 76–91. https://doi.org/10.1016/j.cagd.2016.05.005 doi: 10.1016/j.cagd.2016.05.005
    [19] C. Udrişte, Convex functions and optimization methods on Riemannian manifolds, vol. 297 of Mathematics and its applications, Kluwer Academic Publishers, Dordrecht, 1994. https://doi.org/10.1007/978-94-015-8390-9
    [20] M. H. Yueh, Theoretical foundation of the stretch energy minimization for area-preserving simplicial mappings, SIAM J. Imaging Sci., 16 (2023), 1142–1176. https://doi.org/10.1137/22M1505062 doi: 10.1137/22M1505062
    [21] M. H. Yueh, T. Li, W. W. Lin, S. T. Yau, A novel algorithm for volume-preserving parameterizations of 3-manifolds, SIAM J. Imaging Sci., 12 (2019), 1071–1098. https://doi.org/10.1137/18M1201184 doi: 10.1137/18M1201184
    [22] M. H. Yueh, W. W. Lin, C. T. Wu, S. T. Yau, A novel stretch energy minimization algorithm for equiareal parameterizations, J. Sci. Comput., 78 (2019), 1353–1386. https://doi.org/10.1007/s10915-018-0822-7 doi: 10.1007/s10915-018-0822-7
    [23] X. Zhao, Z. Su, X. D. Gu, A. Kaufman, J. Sun, J. Gao, et al., Area-preservation mapping using optimal mass transport, IEEE T. Vis. Comput. Gr., 19 (2013), 2838–2847. https://doi.org/10.1109/TVCG.2013.135 doi: 10.1109/TVCG.2013.135
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(692) PDF downloads(56) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog