This paper employed the well-known Riccati transformation method to deduce a Kneser-type oscillation criterion for second-order dynamic equations. These results are considered an extension and improvement of the known Kneser results for second-order differential equations and are new for other time scales. We have included examples to highlight the significance of the results we achieved.
Citation: Taher S. Hassan, Amir Abdel Menaem, Yousef Jawarneh, Naveed Iqbal, Akbar Ali. Oscillation criterion of Kneser type for half-linear second-order dynamic equations with deviating arguments[J]. AIMS Mathematics, 2024, 9(7): 19446-19458. doi: 10.3934/math.2024947
This paper employed the well-known Riccati transformation method to deduce a Kneser-type oscillation criterion for second-order dynamic equations. These results are considered an extension and improvement of the known Kneser results for second-order differential equations and are new for other time scales. We have included examples to highlight the significance of the results we achieved.
[1] | S. Hilger, Analysis on measure chains–A unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 |
[2] | V. Kac, P. Chueng, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7 |
[3] | M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Boston: Birkhäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[4] | M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser, 2003. https://doi.org/10.1007/978-0-8176-8230-9 |
[5] | R. P. Agarwal, S. L. Shieh, C. C. Yeh, Oscillation criteria for second-order retarded differential equations, Math. Comput. Modell., 26 (1997), 1–11. https://doi.org/10.1016/S0895-7177(97)00141-6 |
[6] | L. Erbe, T. S. Hassan, A. Peterson, S. H. Saker, Oscillation criteria for sublinear half-linear delay dynamic equations on time scales, Int. J. Differ. Equ., 3 (2008), 227–245. |
[7] | B. Baculikova, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett., 91 (2019), 68–75. https://doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021 |
[8] | O. Bazighifan, E. M. El-Nabulsi, Different techniques for studying oscillatory behavior of solution of differential equations, Rocky Mountain J. Math., 51 (2021), 77–86. https://doi.org/10.1216/rmj.2021.51.77 doi: 10.1216/rmj.2021.51.77 |
[9] | T. S. Hassan, Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl., 345 (2008), 176–185. https://doi.org/10.1016/j.jmaa.2008.04.019 doi: 10.1016/j.jmaa.2008.04.019 |
[10] | S. H. Saker, Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comput. Appl. Math., 177 (2005), 375–387. https://doi.org/10.1016/j.cam.2004.09.028 doi: 10.1016/j.cam.2004.09.028 |
[11] | B. Almarri, A. H. Ali, A. M. Lopes, O. Bazighifan, Nonlinear differential equations with distributed delay: some new oscillatory solutions, Mathematics, 10 (2022), 995. https://doi.org/10.3390/math10060995 doi: 10.3390/math10060995 |
[12] | I. Jadlovská, Iterative oscillation results for second-order differential equations with advanced argument, Electron. J. Differ. Eq., 2017 (2017), 1–11. |
[13] | M. Bohner, K. S. Vidhyaa, E. Thandapani, Oscillation of noncanonical second-order advanced differential equations via canonical transform, Constructive Math. Anal., 5 (2022), 7–13. https://doi.org/10.33205/cma.1055356 doi: 10.33205/cma.1055356 |
[14] | G. E. Chatzarakis, J. Džurina, I. Jadlovská, New oscillation criteria for second-order half-linear advanced differential equations, Appl. Math. Comput., 347 (2019), 404–416. https://doi.org/10.1016/j.amc.2018.10.091 doi: 10.1016/j.amc.2018.10.091 |
[15] | T. S. Hassan, C. Cesarano, R. A. El-Nabulsi, W. Anukool, Improved Hille-type oscillation criteria for second-order quasilinear dynamic equations, Mathematics, 10 (2022), 3675. https://doi.org/10.3390/math10193675 doi: 10.3390/math10193675 |
[16] | G. E. Chatzarakis, O. Moaaz, T. Li, B. Qaraad, Some oscillation theorems for nonlinear second-order differential equations with an advanced argument, Adv. Differ. Equ., 2020 (2020), 160. https://doi.org/10.1186/s13662-020-02626-9 doi: 10.1186/s13662-020-02626-9 |
[17] | R. P. Agarwal, C. Zhang, T. Li, New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations, Appl. Math. Comput., 225 (2013), 822–828. https://doi.org/10.1016/j.amc.2013.09.072 doi: 10.1016/j.amc.2013.09.072 |
[18] | S. Frassu, G. Viglialoro, Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent, Nonlinear Anal., 213 (2021), 112505. https://doi.org/10.1016/j.na.2021.112505 doi: 10.1016/j.na.2021.112505 |
[19] | T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differ. Integral Equ., 34 (2021), 315–336. https://doi.org/10.57262/die034-0506-315 doi: 10.57262/die034-0506-315 |
[20] | R. P. Agarwal, M. Bohner, T. Li, Oscillatory behavior of second-order half-linear damped dynamic equations, Appl. Math. Comput., 254 (2015), 408–418. https://doi.org/10.1016/j.amc.2014.12.091 doi: 10.1016/j.amc.2014.12.091 |
[21] | M. Bohner, T. S. Hassan, T. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indag. Math., 29 (2018), 548–560. https://doi.org/10.1016/j.indag.2017.10.006 |
[22] | M. Bohner, T. Li, Oscillation of second-order $p$-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72–76. https://doi.org/10.1016/j.aml.2014.05.012 doi: 10.1016/j.aml.2014.05.012 |
[23] | T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 86. https://doi.org/10.1007/s00033-019-1130-2 doi: 10.1007/s00033-019-1130-2 |
[24] | T. S. Hassan, M. Bohner, I. L. Florentina, A. A. Menaem, M. B. Mesmouli, New criteria of oscillation for linear Sturm-Liouville delay noncanonical dynamic equations, Mathematics, 11 (2023), 4850. https://doi.org/10.3390/math11234850 doi: 10.3390/math11234850 |
[25] | G. V. Demidenko, I. I. Matveeva, Asymptotic stability of solutions to a class of second-order delay differential equations, Mathematics, 9 (2021), 1847. https://doi.org/10.3390/math9161847 doi: 10.3390/math9161847 |
[26] | A. Kneser, Untersuchungen über die reellen nullstellen der integrale linearer differentialgleichungen, Math. Ann., 42 (1893), 409–435. |
[27] | I. Jadlovská, J. Džurina, Kneser-type oscillation criteria for second-order half-linear delay differential equations, Appl. Math. Comput., 380 (2020), 125289. https://doi.org/10.1016/j.amc.2020.125289 doi: 10.1016/j.amc.2020.125289 |
[28] | O. Došlý, P. Řehák, Half-linear differential equations, Elsevier, 2005. |
[29] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second-order linear, half-linear, superlinear and sublinear dynamic equations, Springer Dordrecht, 2002. https://doi.org/10.1007/978-94-017-2515-6 |
[30] | T. S. Hassan, Y. Sun, A. A. Menaem, Improved oscillation results for functional nonlinear dynamic equations of second-order, Mathematics, 8 (2020), 1897. https://doi.org/10.3390/math8111897 |