Research article Special Issues

Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations

  • Received: 20 January 2024 Revised: 03 March 2024 Accepted: 25 March 2024 Published: 06 May 2024
  • MSC : 33E12, 47G20, 65K10, 65G99, 65R20

  • This paper introduced an efficient method to obtain the solution of linear and nonlinear weakly singular kernel fractional integro-differential equations (WSKFIDEs). It used Riemann-Liouville fractional integration (R-LFI) to remove singularities and approximated the regularized problem with a combined approach using the generalized fractional step-Mittag-Leffler function (GFSMLF) and operational integral fractional Mittag matrix (OIFMM) method. The resulting algebraic equations were turned into an optimization problem. We also proved the method's accuracy in approximating any function, as well as its fractional differentiation and integration within WSKFIDEs. The proposed method was performed on some attractive examples in order to show how their solutions behave at various values of the fractional order $ \digamma $. The paper provided a valuable contribution to the field of fractional calculus (FC) by presenting a novel method for solving WSKFIDEs. Additionally, the accuracy of this method was verified by comparing its results with those obtained using other methods.

    Citation: Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien. Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations[J]. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764

    Related Papers:

  • This paper introduced an efficient method to obtain the solution of linear and nonlinear weakly singular kernel fractional integro-differential equations (WSKFIDEs). It used Riemann-Liouville fractional integration (R-LFI) to remove singularities and approximated the regularized problem with a combined approach using the generalized fractional step-Mittag-Leffler function (GFSMLF) and operational integral fractional Mittag matrix (OIFMM) method. The resulting algebraic equations were turned into an optimization problem. We also proved the method's accuracy in approximating any function, as well as its fractional differentiation and integration within WSKFIDEs. The proposed method was performed on some attractive examples in order to show how their solutions behave at various values of the fractional order $ \digamma $. The paper provided a valuable contribution to the field of fractional calculus (FC) by presenting a novel method for solving WSKFIDEs. Additionally, the accuracy of this method was verified by comparing its results with those obtained using other methods.



    加载中


    [1] G. S. Teodoro, J. A. T. Machado, E. C. de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195–208. https://doi.org/10.1016/j.jcp.2019.03.008 doi: 10.1016/j.jcp.2019.03.008
    [2] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [3] J. F. Gómez-Aguilar, A. Atangana, Applications of fractional calculus to modeling in dynamics and chaos, Boca Raton: Chapman & Hall/CRC Press, 2022. https://doi.org/10.1201/9781003006244
    [4] J. A. T. Machado, Fractional calculus: fundamentals and applications, In: Acoustics and vibration of mechanical structures—AVMS-2017: Proceedings of the 14th AVMS Conference, 2018, 3–11. https://doi.org/10.1007/978-3-319-69823-6_1
    [5] S. Chakraverty, R. M. Jena, S. K. Jena, Computational fractional dynamical systems: fractional differential equations and applications, John Wiley & Sons, 2023.
    [6] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
    [7] J. A. T. Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, et al., Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 1–34. https://doi.org/10.1155/2010/639801 doi: 10.1155/2010/639801
    [8] S. Das, Observation of fractional calculus in physical system description, In: Functional fractional calculus, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-20545-3_3
    [9] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
    [10] H. Jafari, B. Mehdinejadiani, D. Baleanu, Fractional calculus for modeling unconfined groundwater, Berlin, Boston: De Gruyter, 2019. https://doi.org/10.1515/9783110571905-007
    [11] N. Su, Fractional calculus for hydrology, soil science and geomechanics, Boca Raton: CRC Press, 2020. https://doi.org/10.1201/9781351032421
    [12] C. P. Li, Y. Q. Chen, J. Kurths, Fractional calculus and its applications, Phil. Trans. R. Soc. A, 371 (2013), 20130037. http://dx.doi.org/10.1098/rsta.2013.0037 doi: 10.1098/rsta.2013.0037
    [13] Z. J. Meng, L. F. Wang, H. Li, W. Zhang, Legendre wavelets method for solving fractional integro-differential equations, Int. J. Comput. Math., 92 (2015), 1275–1291. https://doi.org/10.1080/00207160.2014.932909 doi: 10.1080/00207160.2014.932909
    [14] K. Kumar, R. K. Pandey, S. Sharma, Comparative study of three numerical schemes for fractional integro-differential equations, J. Comput. Appl. Math., 315 (2017), 287–302. https://doi.org/10.1016/j.cam.2016.11.013 doi: 10.1016/j.cam.2016.11.013
    [15] M. B. Almatrafi, A. R. Alharbi, A. R. Seadawy, Structure of analytical and numerical wave solutions for the Ito integro-differential equation arising in shallow water waves, J. King Saud Univ. Sci., 33 (2021), 101375. https://doi.org/10.1016/j.jksus.2021.101375 doi: 10.1016/j.jksus.2021.101375
    [16] K. Agilan, V. Parthiban, Initial and boundary value problem of fuzzy fractional-order nonlinear Volterra integro-differential equations, J. Appl. Math. Comput., 69 (2023), 1765–1793. https://doi.org/10.1007/s12190-022-01810-2 doi: 10.1007/s12190-022-01810-2
    [17] M. Derakhshan, M. Jahanshahi, H. K. demneh, Investigation the boundary and initial value problems including fractional integro-differential equations with singular kernels, J. Adv. Math. Model., 11 (2021), 97–108. https://doi.org/10.22055/JAMM.2021.34670.1848 doi: 10.22055/JAMM.2021.34670.1848
    [18] X. H. Yang, Z. M. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [19] J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput., 70 (2024), 489–511. https://doi.org/10.1007/s12190-023-01975-4 doi: 10.1007/s12190-023-01975-4
    [20] J. W. Wang, X. X. Jiang, H. X. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002 doi: 10.1016/j.aml.2024.109002
    [21] L. J. Wu, H. X. Zhang, X. H. Yang, F. R. Wang, A second-order finite difference method for the multi-term fourth-order integral-differential equations on graded meshes, Comput. Appl. Math., 41 (2022), 313. https://doi.org/10.1007/s40314-022-02026-7 doi: 10.1007/s40314-022-02026-7
    [22] X. H. Yang, W. L. Qiu, H. F. Chen, H. X. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004
    [23] F. R. Wang, X. H. Yang, H. X. Zhang, L. J. Wu, A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel, Math. Comput. Simul., 199 (2022), 38–59. https://doi.org/10.1016/j.matcom.2022.03.004 doi: 10.1016/j.matcom.2022.03.004
    [24] H. X. Zhang, X. X. Jiang, F. R. Wang, X. H. Yang, The time two-grid algorithm combined with difference scheme for 2D nonlocal nonlinear wave equation, J. Appl. Math. Comput., 2024, 1–25. https://doi.org/10.1007/s12190-024-02000-y
    [25] F. Safari, An accurate RBF-based meshless technique for the inverse multi-term time-fractional integro-differential equation, Eng. Anal. Bound. Elem., 153 (2023), 116–125. https://doi.org/10.1016/j.enganabound.2023.05.015 doi: 10.1016/j.enganabound.2023.05.015
    [26] S. Z. Rida, H. S. Hussien, Efficient Mittag-Leffler collocation method for solving linear and nonlinear fractional differential equations, Mediterr. J. Math., 15 (2018), 1–15. https://doi.org/10.1007/s00009-018-1174-0 doi: 10.1007/s00009-018-1174-0
    [27] S. Z. Rida, H. S. Hussien, A. H. Noreldeen, M. M. Farag, Effective fractional technical for some fractional initial value problems, Int. J. Appl. Comput. Math., 8 (2022), 149. https://doi.org/10.1007/s40819-022-01346-w doi: 10.1007/s40819-022-01346-w
    [28] M. S. Akel, H. S. Hussein, Numerical treatment of solving singular integral equations by using Sinc approximations, Appl. Math. Comput., 218 (2011), 3565–3573. https://doi.org/10.1016/j.amc.2011.08.102 doi: 10.1016/j.amc.2011.08.102
    [29] S. Behera, S. S. Ray, On a wavelet-based numerical method for linear and nonlinear fractional Volterra integro-differential equations with weakly singular kernels, Comput. Appl. Math., 41 (2022), 211. https://doi.org/10.1007/s40314-022-01897-0 doi: 10.1007/s40314-022-01897-0
    [30] G. D. Shi, Y. L. Gong, M. X. Yi, Alternative Legendre polynomials method for nonlinear fractional integro-differential equations with weakly singular kernel, J. Math., 2021 (2021), 1–13. https://doi.org/10.1155/2021/9968237 doi: 10.1155/2021/9968237
    [31] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [32] D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New trends in nanotechnology and fractional calculus applications, Dordrecht: Springer, 2010. https://doi.org/10.1007/978-90-481-3293-5
    [33] M. Bahmanpour, M. T. Kajani, M. Maleki, Solving Fredholm integral equations of the first kind using Muntz wavelets, Appl. Numer. Math., 143 (2019), 159–171. https://doi.org/10.1016/j.apnum.2019.04.007 doi: 10.1016/j.apnum.2019.04.007
    [34] S. C. Shiralashetti, S. Kumbinarasaiah, Laguerre wavelets exact Parseval frame-based numerical method for the solution of system of differential equations, Int. J. Comput. Math., 6 (2020), 101. https://doi.org/10.1007/s40819-020-00848-9 doi: 10.1007/s40819-020-00848-9
    [35] B. B. Tavasani, A. H. R. Sheikhani, H. Aminikhah, Numerical scheme to solve a class of variable-order Hilfer-Prabhakar fractional differential equations with Jacobi wavelets polynomials, Appl. Math. J. Chinese Univ., 37 (2022), 35–51. https://doi.org/10.1007/s11766-022-4241-z doi: 10.1007/s11766-022-4241-z
    [36] D. Hong, J. Z. Wang, R. Gardner, Real analysis with an introduction to wavelets and applications, Elsevier, 2005.
    [37] A. M. Mathai, H. J. Haubold, Special functions for applied scientists, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75894-7
    [38] J. Shahni, R. Singh, Laguerre wavelet method for solving Thomas-Fermi type equations, Eng. Comput., 38 (2022), 2925–2935. https://doi.org/10.1007/s00366-021-01309-7 doi: 10.1007/s00366-021-01309-7
    [39] B. Q. Tang, X. F. Li, Solution of a class of Volterra integral equations with singular and weakly singular kernels, Appl. Math. Comput., 199 (2008), 406–413. https://doi.org/10.1016/j.amc.2007.09.058 doi: 10.1016/j.amc.2007.09.058
    [40] P. K. Kythe, P. Puri, Computational methods for linear integral equations, Boston: Birkhauser, 2002.
    [41] M. X. Yi, J. Huang, CAS wavelet method for solving the fractional integro-differential equation with a weakly singular kernel, Int. J. Comput. Math., 92 (2015), 1715–1728. https://doi.org/10.1080/00207160.2014.964692 doi: 10.1080/00207160.2014.964692
    [42] V. V. Zozulya, P. I. Gonzalez-Chi, Weakly singular, singular and hypersingular integrals in 3-D elasticity and fracture mechanics, J. Chin. Inst. Eng., 22 (1999), 763–775. https://doi.org/10.1080/02533839.1999.9670512 doi: 10.1080/02533839.1999.9670512
    [43] S. Nemati, S. Sedaghat, I. Mohammadi, A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels, J. Comput. Appl. Math., 308 (2016), 231–242. https://doi.org/10.1016/j.cam.2016.06.012 doi: 10.1016/j.cam.2016.06.012
    [44] Y. X. Wang, L. Zhu, Z. Wang, Fractional-order Euler functions for solving fractional integro-differential equations with weakly singular kernel, Adv. Differ. Equ., 2018 (2018), 1–13. https://doi.org/10.1186/s13662-018-1699-3 doi: 10.1186/s13662-018-1699-3
    [45] S. Nemati, P. M. Lima, Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions, Appl. Math. Comput., 327 (2018), 79–92. https://doi.org/10.1016/j.amc.2018.01.030 doi: 10.1016/j.amc.2018.01.030
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(561) PDF downloads(67) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog