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Abstract: This paper introduced an efficient method to obtain the solution of linear and
nonlinear weakly singular kernel fractional integro-differential equations (WSKFIDEs). It used
Riemann-Liouville fractional integration (R-LFI) to remove singularities and approximated the
regularized problem with a combined approach using the generalized fractional step-Mittag-Leffler
function (GFSMLF) and operational integral fractional Mittag matrix (OIFMM) method. The resulting
algebraic equations were turned into an optimization problem. We also proved the method’s accuracy in
approximating any function, as well as its fractional differentiation and integration within WSKFIDEs.
The proposed method was performed on some attractive examples in order to show how their solutions
behave at various values of the fractional order 𭟋. The paper provided a valuable contribution to the
field of fractional calculus (FC) by presenting a novel method for solving WSKFIDEs. Additionally,
the accuracy of this method was verified by comparing its results with those obtained using other
methods.
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1. Introduction

Recently, fractional calculus (FC) has attracted much attention since it can be used to model physical
and engineering problems [1–3]. There are several definitions of fractional derivatives that do not
coincide in general, like, Gröunwald-Letnikov, Riemann-Liouville, Caputo, Atangana-Baleanu, and
Caputo-Fabrizio (see, e.g., [4,5]). In our work, we intend to use the Caputo fractional derivative (CFD),
which is the most commonly used derivative among physicists and scientists because it provides a
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physical interpretation that is consistent with the behavior of many physical and biological systems,
making it a valuable tool for modeling and analyzing various natural phenomena, including biology [6],
energy systems [7], physics [8, 9], groundwater flow modeling [10], and geomechanics [11].
The performance of many life systems can be represented utilizing fractional integro-differential
equations (FIDEs) [12–17] by virtue of the recent works of FC in different trends of science and
technology. In fact, solving fractional weakly singular kernels integral and integro-differential
equations can be challenging but there are numerical methods that can be used to approximate their
solutions; for example, the finite volume method [18], finite difference method [19–21], finite element
method [22], two-grid method [23,24], backward substitution method [25], and the spectral collocation
method that is commonly used in literatures.

The spectral collocation method involves approximating the solution to the FIDE using certain basis
functions. These basis functions can have orthogonal or nonorthogonal basis. One of the common
nonorthogonal bases is the Mittag-Leffler function (MLF) [26, 27]. Computing unknown coefficients
using collocation points in the weakly singular kernel can be handled using a special quadrature
technique. Generally, this approach is efficient and accurate, but can be computationally intensive
for large-scale problems. There are different approaches for treating these kinds of equations such
as the Sinc approximation with smoothing transformations [28], wavelet-based technique [29], and
alternative operational matrix Legendre polynomials technique [30].

In the present article, we intend to merge the generalized fractional Mittag-Leffler
function (GFMLF) with a simple step function to obtain a powerful base for approximation called
the generalized fractional step-Mittag-Leffler function (GFSMLF) and use it to gain a convenient
solution for the following general form of the weakly singular kernel fractional integro-differential
equations (WSKFIDEs).

• Linear kernel:

D𭟋O(t) = κ
∫ t

0

O(τ)
(t − τ)σ

dτ +G(t)O(t) + H(t), 𭟋 > 0, 0 ≤ σ < 1, t ∈ I := [0,T ]. (1.1)

• Nonlinear kernel:

D𭟋O(t) = κ
∫ t

0

χ̃(O(τ))
(t − τ)σ

dτ +G(t)O(t) + H(t), (1.2)

O(k)(0) = θk, k = 0, 1, ...,N − 1, (1.3)

where O(t) is the unknown function, G(t),H(t) are continuous functions on I, θk (k = 0, 1, ...,N − 1), κ
is a real constant, N = ⌈𭟋⌉ equals the smallest integer that is bigger than 𭟋, and D𭟋 is CFD of order 𭟋.

The main aim of our work is to provide an efficient method to obtain the solution of
linear and nonlinear WSKFIDEs. We remove the singularity via Riemann-Liouville fractional
integration (R-LFI). The original problem is transformed into a regular integro-differential problem.
In order to construct a new method to approximate the solution of such a problem, we developed
the GFSMLF method, which integrates GFMLF with a step function to obtain a powerful base for
approximation. Also, we construct the operational integral fractional Mittag matrix (OIFMM) method,
which is more efficient to approximate the fractional integral even if it has a nonlinear term in the
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integrand. The proposed approach combines two methods in order to get the approximate solutions
of the considered problems. The first one is the GFSMLF method and the second is the OIFMM
method. We implemented the proposed method by approximating the fractional integral via the
OIFMM method while approximating each fractional derivative in the problem via the GFSMLF
method. This implementation of the proposed method yields nonlinear algebraic equations, which
we transformed into an optimization problem. Additionally, we provide a proof of the error analysis
for the suggested method in approximating any function, its fractional differentiation, and integration
of the WSKFIDE. We include some numerical examples to demonstrate the efficacy and accuracy of
our method.

The organization of this paper is as follows: In Section 2, we present some important preliminaries
of FC. In Section 3, we discuss the approximation base. The procedures of the proposed method
are placed in Section 4. Error analysis of the proposed method is deduced in Section 5. Numerical
simulations of some examples are shown in Section 6. Our conclusions are presented in Section 7.

2. Preliminaries

Here, we give some preliminaries of FC, which are especially useful for the outcomes of our work.

Definition 2.1. The CFD D𭟋 of order 𭟋 is given as follows [31]:

D𭟋u(t) =
1

Γ(m − 𭟋)

∫ t

0
(t − τ)m−𭟋−1u(m−1)(τ)dt, m − 1 < 𭟋 ≤ m, m ∈ N, t > 0.

The CFD D𭟋 is satisfied in the following properties:

(i) D𭟋tη =
Γ(η + 1)
Γ(η + 1 − 𭟋)

tη−𭟋, η > 𭟋 − 1,

(ii) D𭟋
n∑

k=1

βkuk(t) =
n∑

k=1

βkD
𭟋uk(t).

(2.1)

Definition 2.2. The R-LFI I𭟋 of order 𭟋 > 0 is given as follows [31]:

I𭟋u(t) =
1
Γ(𭟋)

∫ t

0
(t − τ)𭟋−1u(τ)dτ, t > 0. (2.2)

The R-LFI I𭟋 has these properties (see, e.g., [32]):

(i) I𭟋tη =
Γ(η + 1)
Γ(η + 1 + 𭟋)

tη+𭟋, η ≥ −1,

(ii) I𭟋
n∑

k=1

βkuk(t) =
n∑

k=1

βkI
𭟋uk(t),

(iii) D𭟋I𭟋u(t) = u(t),

(iv) I𭟋D𭟋u(t) = u(t) − u(0) − tu′(0) −
t2

Γ(3)
u′′(0) − ... −

t⌈𭟋−1⌉

Γ(⌈𭟋 − 1⌉)
D⌈𭟋−1⌉u(0).

(2.3)
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3. Approximation base

Here, we are thinking of creating a method similar to wavelet approximations using a class of
nonorthogonal functions such as the MLF [26]. It is noticeable that most of those who deal with
wavelet approximations tend to use orthogonal functions as a basis (see, e.g., [33–35]). Therefore, it is
necessary for us to start with the basics of the subject, and we have chosen to define the step function
and GFMLF.

3.1. Step function and GFMLF

For the step function, let

φ jk(t) =
{

1, j−1
2k ≤ t ≤ j

2k ,

0, otherwise,

where j = 1, 2, ..., 2k = n, then for any function O(t) ∈ L2, there exist step functions as [36]

O j(t) =
∞∑

k=0

a jkφ jk(t),

such that

lim
j→∞
∥ O j(t) − O(t) ∥= 0.

Now, the MLF of two-parameter is given by the following power series [37]:

Wβ,γ(t) =
∞∑

k=0

tk

Γ(βk + γ)
, β > 0, γ > 0, t ∈ R.

Furthermore, the generalized MLF is defined in [27] as

Wα,γ(t) =
⌈α⌉∑
k=0

tαk

Γ(αk + γ)
, α, γ > 0, t ∈ R.

In our work, we shall define the GFMLF as

Wα,β,γ
M (t) =

M∑
k=0

tαk

Γ(βk + γ)
, 0 < α ≤ 1, β > 0, γ > 0, t ∈ R. (3.1)

Seeking the fractional differentiation and integration of Eq (3.1) with the use of Eqs (2.1) and (2.3),
we have

D𭟋Wα,β,γ
M (t) =

M∑
k=0

Γ(αk + 1)
Γ(βk + γ)

tαk−𭟋

Γ(αk + 1 − 𭟋)
(3.2)

and

I𭟋Wα,β,γ
M (t) =

M∑
k=0

Γ(αk + 1)
Γ(βk + γ)

tαk+𭟋

Γ(αk + 1 + 𭟋)
. (3.3)
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3.2. Approximation via GFSMLF

We now define GFSMLF, which can be described as a new function for approximation

Qα,β,γj (t) =
{

Wα,β,γ
j (t), j−1

2k ≤ t ≤ j
2k ,

0, otherwise,
(3.4)

where j = 1, 2, ..., 2k = n. Its fractional differentiation and integration are defined with the use of
Eqs (3.2) and (3.3) by

D𭟋Qα,β,γj (t) =
{
D𭟋Wα,β,γ

j (t), j−1
2k ≤ t ≤ j

2k ,

0, otherwise,

and

I𭟋Qα,β,γj (t) =
{
I𭟋Wα,β,γ

j (t), j−1
2k ≤ t ≤ j

2k ,

0, otherwise.

Figure 1 shows graphs of the GFSMLF for n = 4 with various values of MLF parameter α.

Figure 1. Graph of GFSMLF given in Eq (3.4) for n = 4 with various values of MLF
parameter α, where β = 0.7 and γ = 1.

Obviously, most authors in this field use the following approximation (see, e.g., [38]):

Onm(t) =
n∑

j=1

m∑
k=1

c jkQα,β,γj (t) = CQ̄(t), (3.5)

where C = {c jk}
n,m
j=1,k=1 is n ∗ m unknown constants. However, in this work, we suggest the following

approximation of O(t) in terms of GSFMLF as

Onm(t) =
n∑

j=1

m∑
k=1

a jbkQα,β,γj (t) = Ā Q̄(t), (3.6)
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and its fractional derivative is defined as

D𭟋Onm(t) = Ā D𭟋Q̄(t), (3.7)

where Ā = [b1, b2, ..., bm](
∑n

j=1 a j); A = [a1, a2, ..., an], B = [b1, b2, ..., bm] and Q̄(t) = [Qα,β,γj ]n
j=1. Here,

A and B represent n+m unknowns and this reduces the effort to implement the present approach. This
family of functions is not normalized or orthogonal, in contrast to most of the wavelet functions.

3.3. Operational integral fractional Mittag matrix

As we may have a nonlinear term in the integrand, it may be difficult to treat this situation making
use of the GSFMLF method. So, in this subsection, we shall construct the OIFMM method for this
object. Let χ(t) be any function, and it can be approximated via GSFMLF as

χ(t) =
m∑

k=0

rkW
α,β,γ
k (t) = RTΦ(t), (3.8)

with Φ(t) = [Wα,β,γ
1 (t),Wα,β,γ

2 (t), ...,Wα,β,γ
n (t)]T , as defined by Eq (3.1). The unknown coefficients R =

[rk]n
k=0 can be written as

R = χTΘ, (3.9)

where Θ = [θlk]n
l,k=0 is to be obtained. By combining Eqs (3.8) and (3.9), we conclude that

χ(t) = χΘTΦ(t), (3.10)

or
ΘTΦ(x) = I =⇒ ΘT = [Φ(x)]−1. (3.11)

It is clear that Θ in Eq (3.11) can be easily calculated. For an approximation of frational integrals, we
can integrate Eq (3.10) with fractional order 𭟋 to obtain

I𭟋χ(t) = χ
[
ΘT I𭟋Φ(t)

]
= I𭟋W(t)χT ,

where I𭟋W(t) = ΘT I𭟋Φ(t) is the OIFMM.

4. Implementation of the method

To begin, the singularity of the problems (1.1)–(1.3) will be removed via R-LFI (2.2). The resulting
regular FIDEs for linear and nonlinear kernels are, respectively:

D𭟋Onm(t) = κΓ(1 − σ)I1−σOnm(t) +G(t)Onm(t) + H(t), (4.1)

D𭟋Onm(t) = κΓ(1 − σ)I1−σχ̃(Onm(τ)) +G(t)Onm(t) + H(t), (4.2)

subject to the following initial conditions for each:

O(k)
nm(0) = θk. (4.3)
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The linear problem (4.1) with (4.3) and nonlinear problem (4.2) with (4.3) in view of Eqs (3.6) and (3.7)
can be written, respectively, as

ĀD𭟋Q̄(t) − κĀΓ(1 − σ)I1−σQ̄(t) −G(t)ĀQ̄(t) − H(t) = 0, (4.4)

and

ĀD𭟋Q̄(t) − κĀΓ(1 − σ)I1−σχ̃
(
Q̄(t)
)
−G(t)ĀQ̄(t) − H(t) = 0, (4.5)

where 𭟋 > 0, 0 < β ≤ 1, t ∈ [0, 1]. On the other hand, the fractional integrations of Eqs (4.4) and (4.5)
shall be approximated by making use of the OIFMM to obtain

ĀD𭟋Q̄(t) − κĀΓ(1 − σ)I1−σ
W (t)Q̄(t) −G(t)ĀQ̄(t) − H(t) = 0, (4.6)

and
ĀD𭟋Q̄(t) − κĀΓ(1 − σ)I1−σ

W (t)χ̃
(
Q̄(t)
)
−G(t)ĀQ̄(t) − H(t) = 0. (4.7)

The obtained system of linear algebraic equations (4.6) with (4.3) and (4.7) with (4.3) can be
reformulated as minimization problems, with the following objective functions, respectively:

S =
[
ĀD𭟋Q̄(t) − κĀΓ(1 − σ)I1−σ

W (t)Q̄(t) −G(t)ĀQ̄(t) − H(t)
]2
+
[
Ā DkQ̄(0) − θk

]2
,

and
S =
[
ĀD𭟋Q̄(t) − κĀΓ(1 − σ)I1−σ

W (t)χ̃
(
Q̄(t)
)
−G(t)ĀQ̄(t) − H(t)

]2
+
[
Ā DkQ̄(0) − θk

]2
.

By solving the above equations for the unknowns A and B, the approximate solution (3.6) of the given
problem can be determined.

5. Error analysis

The main purpose of this section is to discuss the error of the numerical solution obtained by the
proposed method in the previous section.

Theorem 5.1. Suppose that O(t) ∈ C∞[0,T ]; T ∈ R, is approximated by Eq (3.6), then ∀ t ∈ [0,T ].
There exists τ ∈ [0,T ], such that

O(t) − Onm(t) =
Γ
(
ξ(n + 1) + η

)
(n + 1)!

Qα,β,γn+1 (t) O(n+1)
nm (τ), (5.1)

and the uniform norm error is

||O(t) − Onm(t)|| ≤ ϵ
Γ
(
ξ(n + 1) + η

)
(n + 1)!

Qα,β,γn+1 (τ), (5.2)

where ϵ = supτ∈[0,T ]||O
(n+1)
nm (τ)||.
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Proof. Let O(t) ∈ C∞[0,T ] be approximated by Eq (3.6) and define the function: T (t) = O(t)−Onm(t)−
θQα,β,γn+1 (t). We can choose the parameter θ such that the equation T (t) = 0 has a solution z0 with the
property Qα,β,γn+1 (t) , 0. In this case, we can write O(t0) − Onm(t0) − θQα,β,γn+1 (z0) = 0, so

θ =
O(t0) − Onm(t0)

Qα,β,γn+1 (t0)
. (5.3)

Since O(t) ∈ C∞[0, 1], Qαβ,γn (t0) ∈ Cn[0,∞] and Qαβ,γn+1 (z0) ∈ Cn+1[0,∞]; thus, T (t) ∈ Cn+1[0, 1]. So, its
(n + 1)-th order derivative, namely, T (n+1)(t), has at least one root, that is,

T (n+1)(ϖ) = O(n+1)(ϖ) − θ[Qα,β,γn+1 (ϖ)](n+1) − [Qα,β,γn (ϖ)](n) = 0, (5.4)

where Qα,β,γn (ϖ) is a polynomial of degree of at most n, the last term of Eq (5.4), [Qαβ,γn (ϖ)](n) = 0.
Also, we have

[Qα,β,γn+1 (ϖ)](n+1) =
(n + 1)n(n − 1). . . 3(2)1
Γ(ξ(n + 1) + η)

=
(n + 1)!

Γ((ξ(n + 1)) + η)
.

Substituting in Eq (5.4), we obtain

θ =
Γ((ξ(n + 1)) + η)

(n + 1)!
O(n+1)(ϖ). (5.5)

Equations (5.3)–(5.5) yield

O(t0) − Onm(t0) =
Γ((ξ(n + 1)) + η)

((n + 1)!
Qα,β,γn+1 (z0)O(n+1)(ϖ), (5.6)

and so
||O(t0) − Onm(t0)|| =

Γ((ξ(n + 1)) + η)
((n + 1)!

||Qα,β,γn+1 (z0)||||O(n+1)(ϖ)||.

Finally, we take the maximum of ||On+1(ϖ)|| to obtain the second result (i.e., Eq (5.2)). □

Theorem 5.2. Let D𭟋Onm(t), obtained by using GSFM, be the approximation of D𭟋O(t), then we have

||D𭟋O(t) − D𭟋Onm(t)|| ≤ ϵ
Γ
(
ξ(n + 1) + η

)
(n + 1)!

D𭟋
[
Qα,β,γn+1 (t)

]
,

where ϵ = supτ∈[0,T ]||O
(n+1)
nm (τ)||.

Proof. By differentiating Eq (5.1), we have

D𭟋O(t) − D𭟋Onm(t) =
Γ
(
ξ(n + 1) + η

)
(n + 1)!

D𭟋
[
Qα,β,γn+1 (t)

]
O(n+1)

nm (τ). (5.7)

Taking the uniform norm, we get the result. □

Theorem 5.3. Suppose that χ(t) ∈ C∞[0,T ]; T ∈ R, is approximated by Eq (3.8), then ∀ t ∈ [0,T ].
There exists τ ∈ [0,T ], such that

χ(t) − χn(t) =
Γ
(
ξ(n + 1) + η

)
(n + 1)!

Wα,β,γ
n+1 (t) χ(n+1)(τ), (5.8)
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and the error in the OIFMM approximation of the fractional finite integration is

I𭟋χ(t) − I𭟋χn(t) = χ(n+1)(τ)
Γ
(
ξ(n + 1) + η

)
(n + 1)!

I𭟋
[
Wα,β,γ

n+1 (t)
]
, (5.9)

so

||I𭟋χ(t) − I𭟋χn(t)|| = ϵ
Γ
(
ξ(n + 1) + η

)
(n + 1)!

I𭟋
[
Wα,β,γ

n+1 (t)
]
, (5.10)

where ϵ = supτ∈[0,T ]||χ
(n+1)(τ)||.

Proof. Replacing Qα,β,γn (t) by Wα,β,γ
n+1 (t) in the proof of Theorem 5.1, we obatin

χ(t) − χn(t) =
Γ
(
ξ(n + 1) + η

)
(n + 1)!

Wα,β,γ
n+1 (t) χ(n+1)(τ). (5.11)

By integrating this equation and taking the uniform norm, we get the result. □

Theorem 5.4. Suppose that the above theorems holds, then the error in the approximation of the linear
problem (4.1) with (4.3) is

Enm(t) =
Γ
(
ξ(n + 1) + η

)
(n + 1)!

D𭟋
[
Qα,β,γn+1 (t)

]
O(n+1)

nm (τ) − κΓ(1 − σ)
Γ
(
ξ(n + 1) + η

)
(n + 1)!

×I1−σ
W (t)

[
Qα,β,γn+1 (t)

]
O(n+1)

nm (τ) −G(t)
Γ
(
ξ(n + 1) + η

)
(n + 1)!

Qα,β,γn+1 (t) O(n+1)
nm (τ),

with t ∈ (0,T ] and

Enm(0) =
Γ
(
ξ(n + 1) + η

)
(n + 1)!

Qα,β,γn+1 (0) O(n+1)
nm (τ).

Proof. Equation (4.1) with (4.3) can be rewritten as

D𭟋O(t) − κΓ(1 − σ)I1−σO(t) −G(t)O(t) − H(t) = 0, (5.12)

O(k)(0) − θk = 0. (5.13)

Making use of the approximations (4.1) with (4.3), Eqs (5.12) and (5.13) can be approximated as
follows:

D𭟋Onm(t) − κΓ(1 − σ)I1−σOnm(t) −G(t)Onm(t) − H(t) = 0, (5.14)

O(k)
nm(0) − θk = 0. (5.15)

Subtracting Eq (5.12) from Eq (5.14), the error in approximating the proposed problem is

Enm(t) =
[
D𭟋O(t) − D𭟋Onm(t)

]
− κΓ(1 − σ)

[
I1−σO − I1−σOnm(t)

]
−G(t)

[
O(t) − Onm(t)

]
,

and, similarly,

Enm(0) =
[
O(k)(0) − O(k)

nm(0)
]
.

Making use of Eqs (5.1), (5.7) and (5.9), we obtain the results. □
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6. Numerical results

Linear and nonlinear WSKFIDES are used to model various physical phenomenon such as: heat
conduction problem [39], radiative equilibrium [40], elasticity and fracture mechanics [41, 42], etc. In
this section, three examples are given to show the applicability and accuracy of the proposed method.
All the computations were performed in a personal computer with Intel(R) Core(TM) i7-10510U CPU
@2.30 GHz with 8 GB of RAM and the codes were written in MATLAB software (R2017a). The
computing time is in seconds for the obtained numerical solution of the following examples.

Example 6.1. We consider the linear WSKFIDE, as follows:

D𭟋O(t) =
∫ t

0

O(τ)

(t − τ)
1
2

dτ −
Γ( 1

2 )Γ(ρ + 1)t
1
2

Γ(ρ + 3
2 )

O(t) +
Γ(ρ + 1)
Γ(ρ + 1 − 𭟋)

tρ−𭟋,

O(0) = 0.

The analytic solution is O(t) = tρ. This example is discussed in [43, 44], with ρ = 2. We present in
Figure 2 the numerical solutions for some values of the fractional order 𭟋 and ρ = 2. This figure also
shows the agreement of the numerical and exact solution when 𭟋 = 1. It is evident from Figure 2 that
as 𭟋→ 1 , approximate solutions converge to the exact one.

Figure 2. Numerical and exact solutions for m = 3, n = 1 with different values of 𭟋 where
α = 0.75, β = 0.9, and γ = 0.9.

Table 1 shows the maximum numerical error obtained from the GSFMLF method with a number of
unknowns n + m = 4 + 1, 𭟋 = 1, and ρ = 2, compared to the error in [43] making use of the second
kind Chebyshev polynomials (SKCP) method with a number of unknowns m = 8, as well as in [44] via
the fractional-order Euler functions (FEFs) method with a number of unknowns m = 8. It is clear that
the present method gives a very accurate solution compared to their solution.
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Table 1. Error comparison of Example 6.1.

m + n Present method m SKCP method [43] m FEFs method [44]
4 + 1 7.04551 × 10−15 8 6.5612 × 10−5 8 6.2536 × 10−6

Figure 3 presents the Logarithmic of absolute error with ρ = 1.5,m = 3, n = 1, and some values
of fractional Mittag parameter α. It is clear that α = 0.75 gives the most accurate solution and any
other values give less accuracy. The effects of the remaining Mittag parameters: β is introduced in
Figure 4(a) (where α = 0.75 and γ = 1.0) and γ in Figure 4(b) (here, α = 0.75 and β = 0.9). We found
that there is a small effect that tends to be negligible.

Figure 3. Logarithmic of the absolute error for m = 3, n = 1, with different values of
fractional Mittag parameter α, where β = 0.9, γ = 0.9.

Figure 4. Logarithmic of the absolute error for m = 3, n = 1, with different values of
fractional Mittag parameters: β (left figure) and γ (right figure), where α = 0.75.
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Example 6.2. We consider the nonlinear WSKFIDE, as follows:

D𭟋O(t) =
∫ t

0

O2(τ)

(t − τ)
1
2

dτ −
Γ(1

2 )Γ(2ρ + 1)t
1
2

Γ(2ρ + 3
2 )

O(t) +
Γ(ρ + 1)
Γ(ρ + 1 − 𭟋)

tρ−𭟋,

O(0) = 0.

The analytic solution is O(t) = tρ. This example is examined in [29, 30, 45] with ρ = 3
2 and 𭟋 = 2

3 .
Figure 5 represents the Logarithmic of absolute error for m = 4, n = 1, with some values of fractional
Mittag parameter α (where β = 0.9 and γ = 1).

Figure 5. Logarithmic of the absolute error for m = 4, n = 1, with different values of
fractional Mittag parameters α, where β = 0.9 and γ = 1.

We report in Table 2 comparisons of the maximum numerical errors obtained by the present method
with m = 4, n = 1, those in [29] by the wavelet-based technique (WBT) with m = 4, n = 3, the
alternative Legendre polynomials operational matrix (ALPOM) method [30] with m = 7, and the
modification of hat functions (MHFs) method [45] with m = 64.

Table 2. Error comparison of Example 6.2.

m + n Present method m ALPOM [30] m ∗ n WBT [29] m MHFs [45]
4 + 1 5.3713 × 10−8 7 1.6464 × 10−3 4 ∗ 3 1.2723 × 10−4 64 6.9232 × 10−5

Example 6.3. We consider the nonlinear WSKFIDE, as follows:

D𭟋O(t) = O2(t) +
∫ t

0

O2(τ)

(t − τ)
1
2

dτ + Ψ(t),

O(0) = 0,

whereΨ(t) is given such that the exact solution is O(t) = tρ+κ tϱ. This example is discussed in [29,30],
with ρ = 3, κ = 1, and ϱ = 4/3. We display in Table 3 the numerical error obtained via our method
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with ρ = 3/2, κ = 0, 𭟋 = 2/3, m = 4, and n = 1. At the same data of the problem, Figure 6 includes
absolute error for some values of fractional order 𭟋.

Table 3. Numerical error of Example 6.3.

t Approximate Exact solution Absolute error
0.0 7.1108 × 10−8 0.0 7.1108 × 10−8

1/4 0.12500 0.12500 3.0452 × 10−8

2/4 0.35355 0.35355 1.0944 × 10−8

3/4 0.64952 0.64952 4.1857 × 10−8

1.0 1.0000 1.0000 3.0249 × 10−8

Figure 6. The absolute error of Example 6.3 for m = 4, n = 1, with some values of 𭟋, where
α = 0.75, β = 1 and γ = 1.

For purpose of comparison, we present in Table 4 the maximum numerical errors obtained by the
used method with m = 4, n = 1 and those obtained by the WBT method [29] with m = 2, n = 3,
ρ = 3, κ = 1, 𭟋 = 4/5, and ϱ = 4/3.

Table 4. Error comparison of Example 6.3.

m + n Present method m ∗ n WBT [29]
4 + 1 1.0982 × 10−3 2 ∗ 3 7.26029 × 10−3

We present in Figure 7 the approximate and exact solution of Example 6.3 for some values of the
fractional Mittag parameter α at ρ = 3, κ = 1, and ϱ = 4/3.
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Figure 7. Numerical and exact solution of Example 6.3 for m = 4, n = 1, with different
values of α, where β = 1, γ = 1, and 𭟋 = 2/3.

7. Conclusions

In this study, we have developed an efficient technique to obtain the appropriate solution for
linear and nonlinear WSKFIDEs. The proposed approach combines two methods in order to get the
approximate solution of the considered problems. Part of this technique is the GFSMLF, constructed
in the same manner as wavelet approximations by a class of nonorthogonal functions. Precisely,
the combination of the fractional MLF with the step function has provided more accurate solutions
for WSKFIDEs. The second part is the OIFMM method. This implementation of the proposed
method yields nonlinear algebraic equations, which we transformed into an optimization problem.
In addition, we presented the error analysis of the proposed method in approximating any function, its
fractional differentiation, and integration of the WSKFIDE. The efficiency and accuracy of our method
was tested on three examples. We can summarize the following observations that resulted from the
implementation of the proposed method:

• We impose R-LFI to remove the singularity of the problem.
• The proposed method obtained a very accurate solution compared to those obtained in [43–45]

and [29, 30], making use of a smaller number of unknowns (see Tables 1, 2 and 4).
• The fractional Mittag parameter α has a significant impact on the method’s accuracy compared to

the effect of β and γ (see Figure 3 (for α in Example 6.1), Figure 4 (for β, γ in Example 6.1), and
Figure 5 (for α in Example 6.2)).
• Formulating test problems to be dependent on fractional differentiation of order 𭟋, introducing a

large number of cases as in Figure 6 of Example 6.3. Indeed, each curve of this figure represents
a different problem in which the proposed method is so accurate.
• The suggested method here can be used to solve other kinds of fractional differential equations

and related problems such as systems of nonlinear FIDEs with weakly singular kernel.
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