A Mixture of factor analyzer (MFA) model is a powerful tool to reduce the number of free parameters in high-dimensional data through the factor-analyzer technique based on the covariance matrices. This model also prepares an efficient methodology to determine latent groups in data. In this paper, we use an MFA model with a rich and flexible class of distributions called hidden truncation hyperbolic (HTH) distribution and a Bayesian structure with several computational benefits. The MFA based on the HTH family allows the factor scores and the error component can be skewed and heavy-tailed. Therefore, using the HTH family leads to the robustness of the MFA in modeling asymmetrical datasets with/without outliers. Furthermore, the HTH family, because of several desired properties, including analytical flexibility, provides steps in the estimation of parameters that are computationally tractable. In the present study, the advantages of MFA based on the HTH family have been discussed and the suitable efficiency of the introduced MFA model has been demonstrated by using real data examples and simulation.
Citation: Hamid Reza Safaeyan, Karim Zare, Mohamadreza Mahmoudi, Mohsen Maleki, Amir Mosavi. A Bayesian approach on asymmetric heavy tailed mixture of factor analyzer[J]. AIMS Mathematics, 2024, 9(6): 15837-15856. doi: 10.3934/math.2024765
A Mixture of factor analyzer (MFA) model is a powerful tool to reduce the number of free parameters in high-dimensional data through the factor-analyzer technique based on the covariance matrices. This model also prepares an efficient methodology to determine latent groups in data. In this paper, we use an MFA model with a rich and flexible class of distributions called hidden truncation hyperbolic (HTH) distribution and a Bayesian structure with several computational benefits. The MFA based on the HTH family allows the factor scores and the error component can be skewed and heavy-tailed. Therefore, using the HTH family leads to the robustness of the MFA in modeling asymmetrical datasets with/without outliers. Furthermore, the HTH family, because of several desired properties, including analytical flexibility, provides steps in the estimation of parameters that are computationally tractable. In the present study, the advantages of MFA based on the HTH family have been discussed and the suitable efficiency of the introduced MFA model has been demonstrated by using real data examples and simulation.
[1] | T. Ando, Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood, J. Multivariate Anal., 100 (2009), 1717–1726. https://doi.org/10.1016/j.jmva.2009.02.001 doi: 10.1016/j.jmva.2009.02.001 |
[2] | R. B. Arellano-Valle, M. G. Genton, On fundamental skew distributions, J. Multivariate Anal., 96 (2005), 93–116. https://doi.org/10.1016/j.jmva.2004.10.002 doi: 10.1016/j.jmva.2004.10.002 |
[3] | J. Bai, K. Li, Statistical analysis of factor models in high dimensions, Ann. Statist., 40 (2012), 436–465. https://doi.org/10.1214/11-AOS966 doi: 10.1214/11-AOS966 |
[4] | O. Barndorff-Nielsen, C. Halgreen, Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 38 (1977), 309–311. https://doi.org/10.1007/BF00533162 doi: 10.1007/BF00533162 |
[5] | M. Bazrafkan, K. Zare, M. Maleki, Z. Khodadi, Partially linear models based on heavy-tailed and asymmetrical distributions, Stoch. Environ. Res. Risk Assess., 36 (2022), 1243–1253. https://doi.org/10.1007/s00477-021-02101-1 doi: 10.1007/s00477-021-02101-1 |
[6] | M. D. Branco, D. K. Dey, A general class of multivariate skew-elliptical distributions, J. Multivariate Anal., 79 (2001), 99–113. https://doi.org/10.1006/jmva.2000.1960 doi: 10.1006/jmva.2000.1960 |
[7] | A. Cannon A, G. Cobb, B. Hartlaub, J. Legler, R. Lock, T. Moore, et al., Stat2Data: Datasets for Stat2. R package version 2.0.0, 2019, Available from: https://CRAN.R-project.org/package = Stat2Data. |
[8] | M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, L. Carin, Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance bounds, IEEE T. Signal Proces, 58 (2010), 6140–6155. https://doi.org/10.1109/TSP.2010.2070796 doi: 10.1109/TSP.2010.2070796 |
[9] | D. Gamerman, Markov Chain Monte Carlo: Stochastic simulation for Bayesian inference, London: Chapman & Hill, 1997. |
[10] | A. E. Gelfand, A. F. M. Smith, Sampling based approaches to calculating marginal densities, J. Am. Stat. Assoc., 85 (1990), 398–409. https://doi.org/10.2307/2289776 doi: 10.2307/2289776 |
[11] | A. Gelman, D. B. Rubin, Inference from iterative simulation using multiple sequences, Statist. Sci., 7 (1992), 457–472. https://doi.org/10.1214/ss/1177011136 doi: 10.1214/ss/1177011136 |
[12] | Z. Ghahramani, G. E. Hinton, The EM algorithm for mixtures of factor analyzers (Technical Repoort CRG-TR-96-1), Department of Computer Science, University of Toronto, 6 King's College Road, Toronto, Canada, M5S 1A4, 1997. |
[13] | I. J. Good, The population frequencies of species and the estimation of population parameters, Biometrika, 40 (1953), 237–264. https://doi.org/10.1093/biomet/40.3-4.237 doi: 10.1093/biomet/40.3-4.237 |
[14] | R. P. Gorman, T. J. Sejnowski, Analysis of hidden units in a layered network trained to classify sonar targets, Neural Networks, 1 (1988), 75–89. https://doi.org/10.1016/0893-6080(88)90023-8 doi: 10.1016/0893-6080(88)90023-8 |
[15] | L. Hubert, P. Arabie, Comparing partitions, J. Classif., 2 (1985), 193–218. https://doi.org/10.1007/BF01908075 doi: 10.1007/BF01908075 |
[16] | H. M. Kim, M. Maadooliat, R. B. Arellano-Valle, M. G. Genton, Skewed factor models using selection mechanisms, J. Multivariate Anal., 145 (2016), 162–177. https://doi.org/10.1016/j.jmva.2015.12.007 doi: 10.1016/j.jmva.2015.12.007 |
[17] | S. X. Lee, G. J. McLachlan, Finite mixtures of canonical fundamental skew t-distributions, Stat. Comput., 26 (2016), 573–589. https://doi.org/10.1007/s11222-015-9545-x doi: 10.1007/s11222-015-9545-x |
[18] | S. X. Lee, G. J. McLachlan, On formulations of skew factor models: skew errors versus skew factors, Stat. Probabil. Lett., 168 (2021), 108935. https://doi.org/10.1016/j.spl.2020.108935 doi: 10.1016/j.spl.2020.108935 |
[19] | S. Y. Lee, Y. M. Xia, A robust Bayesian approach for structural equation models with missing data, Psychometrika, 73 (2008), 343–364. https://doi.org/10.1007/s11336-008-9060-5 doi: 10.1007/s11336-008-9060-5 |
[20] | G. K. Smyth, Australasian Data and Story Library (OzDASL), 2011. https://gksmyth.github.io/ozdasl |
[21] | T. I. Lin, J. C. Lee, S. Y. Yen, Finite mixture modeling using the skew-normal distribution, Stat. Sinica., 17 (2007), 909–927. |
[22] | T. I. Lin, G. J. McLachlan, S. X. Lee, Extending mixtures of factor models using the restricted multivariate skew-normal distribution, J. Multivariate Anal., 143 (2016), 398–413. https://doi.org/10.1016/j.jmva.2015.09.025 doi: 10.1016/j.jmva.2015.09.025 |
[23] | C. Luo, L. Shen, A. Xu, Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints, Reliab. Eng. Syst. Safe., 218 (2022), 108136. https://doi.org/10.1016/j.ress.2021.108136 doi: 10.1016/j.ress.2021.108136 |
[24] | M. R. Mahmoudi, M. Maleki, D. Baleanu, V. T. Nguyen, K. H. Pho, A Bayesian approach to heavy-tailed finite mixture autoregressive models, Symmetry, 12 (2020), 929. https://doi.org/10.3390/sym12060929 doi: 10.3390/sym12060929 |
[25] | M. Maleki, G. J. McLachlan, S. X. Lee, Robust clustering based on finite mixture of multivariate fragmental distributions, Stat. Model., 23 (2023), 247–272. https://doi.org/10.1177/1471082X211048660 doi: 10.1177/1471082X211048660 |
[26] | J. S. Marron, M. P. Wand, Exact mean integrated squared error, Ann. Statist., 20 (1992), 712–736. |
[27] | P. M. Murray, R. B. Browne, P. D. McNicholas, Hidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clustering, J. Multivariate Anal., 161 (2017), 141–156. https://doi.org/10.1016/j.jmva.2017.07.008 doi: 10.1016/j.jmva.2017.07.008 |
[28] | NIMBLE Development Team, NIMBLE: An R package for programming with BUGS models, Version 0.6-10, 2021, Available from: http://r-nimble.org. |
[29] | K. Roeder, L. Wasserman, Practical Bayesian density estimation using mixtures of normals, J. Am. Stat. Assoc., 92 (1997), 894–902. https://doi.org/10.2307/2965553 doi: 10.2307/2965553 |
[30] | M. M. Wall, J. Guo, Y. Amemiya, Mixture factor analysis for approximating a non-normally distributed continuous latent factor with continuous and dichotomous observed variables, Multivariate Behav. Res., 47 (2012), 276–313. https://doi.org/10.1080/00273171.2012.658339 doi: 10.1080/00273171.2012.658339 |
[31] | M. Yang, D. B. Dunson, Bayesian semiparametric structural equation models with latent variables, Psychometrika, 75 (2010), 675–693. https://doi.org/10.1007/s11336-010-9174-4 doi: 10.1007/s11336-010-9174-4 |
[32] | S. Zhou, A. Xu, Y. Tang, L. Shen, Fast Bayesian inference of reparameterized gamma process with random effects, IEEE T. Reliab., 2023, 1–14. https://doi.org/10.1109/TR.2023.3263940 doi: 10.1109/TR.2023.3263940 |