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Abstract: A Mixture of factor analyzer (MFA) model is a powerful tool to reduce the number of free 

parameters in high-dimensional data through the factor-analyzer technique based on the covariance 

matrices. This model also prepares an efficient methodology to determine latent groups in data. In this  

paper, we use an MFA model with a rich and flexible class of distributions called hidden truncation 

hyperbolic (HTH) distribution and a Bayesian structure with several computational benefits. The MFA 

based on the HTH family allows the factor scores and the error component can be skewed and heavy-

tailed. Therefore, using the HTH family leads to the robustness of the MFA in modeling asymmetrical 

datasets with/without outliers. Furthermore, the HTH family, because of several desired properties, 

including analytical flexibility, provides steps in the estimation of parameters that are computationally 

tractable. In the present study, the advantages of MFA based on the HTH family have been discussed 

and the suitable efficiency of the introduced MFA model has been demonstrated by using real data 

examples and simulation. 
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1. Introduction 

In multilevel and high-dimensional data, analysis and identification of latent or hidden variables 

is a main statistical problem and using the finite mixture model (FM) with factor analyzer (FA) models 

as components is a useful statistical technique to model such datasets. The relationship between several 

variables can be described in an FA model by reducing the dimension of variables into some smaller 

latent factors. Such a procedure is applied in different fields like psychometric testing to facilitate the 

analysis of high-dimensional data. The FM model can detect the existence of subgroups among a 

general population using latent variables’ models. These approaches are widely employed in numerous 

fields such as artificial intelligence, biology, data mining, epidemiological studies, medical sciences 

and social sciences. Ghahramani and Hinton [12] combined the FM model and FA model which is 

usually called the MFA model. In basic statistical models, researchers usually assume Gaussian 

distribution (see e.g., Marron and Wand [26] and Roeder and Wasserman [29]). However, Wall et al. [30] 

showed that in many real applications, the data may be mildly or extremely asymmetry which can lead 

to serious misleading inference from normality (note that such issue can occur even for small 

deviations). Thus, the imposition of symmetric components of the mixture models in the applications 

is a fairly restrictive condition (See Mahmoudi et al. [24] and Maleki et al. [25], for detailed examples 

and discussions). 

In recent decades, different families of asymmetric distributions have been introduced and used, 

for example: Skew-Normal (SN) (Arellano-Valle and Genton [2]) and a family of two-pieces scale 

mixtures of normal (TP-SMN) (Bazrafkan et al. [5]). Lee and McLachlan [17] focused on a family 

named unrestricted Skew-t (SUT). “Restricted” is referred to as asymmetric behaviors that were 

controlled by multiplying an ordinary skewing variable on convolution type representation to a vector 

of skewness parameters. In “unrestricted” forms, in contrast to restricted forms where skewness is 

present in a single direction, the skewness is free to present in more than one direction. In recent years, 

multivariate skewed distributions are considered for FA and MFA approaches. Kim et al. [16] 

considered the  FA models for which errors followed a symmetric (Gaussian) distribution and factors 

followed skewed distributions such as skew-normal, generalized skew-normal and skew-t. Lin et al. [22] 

developed the MFA model based on multivariate restricted skew-normal (RSN) for the factor 

component, which is called the finite mixtures of skew-normal factor analyzer (MSNFA). In this work, 

the HTH family of distributions is considered in the MFA model. The HTH family is 

symmetrical/asymmetrical with light/heavy tailed-ness and is an extension of the unrestricted skew 

normal distribution (SUN; given by Arellano-Valle and Genton [2]) by employing a generalized 

inverse Gaussian (GIG; Good [13]) for the scale mixer component. 

The maximum likelihood (ML) estimates (classical inferences) are the basis of the most common 

estimation methods of MFA model parameters, while for some samples, the likelihood function is 

unbounded. To solve this issue, Bayesian inferences can be employed to estimate the parameters of the 

Gaussian MFA model. Ando [1] and Lee and Xia [19] extend the Gaussian MFA model by considering 

a t-distribution (matrix-variate) for the scores (factor) and independent Gaussian family for the errors, 

respectively. Yang and Dunson [31] concentrated on the semi-parametric MFA model; while Chen et 

al. [8] focused on non-parametric approaches in the MFA model (see also Luo et al. [23] for recently 

published work.). To overcome the maintained issues, in this work, a Bayesian technique is developed 

to estimate the parameters of the model. In comparison to ML estimations, using a Bayesian approach 

for MFA models has several other computational advantages, particularly in high dimensional settings 
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for the specification of priors to regularize the parameter space. It is noted that in a Bayesian framework, 

information can be included in Bayesian inferences without computational demands or complexity. 

Additionally, the number of factors and components in the MFA model could vary, and as a result, they 

can be updated as the computational part. We also note that the effect of the missing data can be a huge 

problem and its reduction using a Bayesian setting on parameter estimates is one of the quite effective 

and natural ways (e.g., class-dependent missingness). In the Bayesian framework, it is considered the 

iterations of MCMC to obtain the posterior predictive distribution. Note that, the calculation of the 

standard error of ML estimations of complex mixture models requires a lot of computations and 

involves the appraisement of the derivatives for complex functions used for estimating the parameters. 

Besides the above-mentioned advantages of Bayesian methodology, another superiority of the 

work is that the HTH family prepares a high level of flexibility and performance for usage in factor 

analysis models, i.e., some partitions of an HTH random vector to uncorrelated homogeneous HTH 

random vectors can provide simultaneous asymmetric error and factor. As Lee and McLachlan [18] 

mentioned, this structure for the MFA model, that is named skew factors and errors (SFE), is an open 

problem. It is worth mentioning that our proposed model has such structure. Furthermore, to show the 

performance of the Bayesian technique in this MFA situation, the missing data is considered and the 

applicability of the introduced MFA model is evaluated. In Sections 2 and 3, preliminaries and notions 

of the SUN, GIG and HTH distributions are examined. A Bayesian approach with the Gibbs sampling 

algorithm for the HTH-MFA model is presented in Section 4. In Section 5, the ability and suitability 

of the introduced MFA model are evaluated using some simulated and real datasets. Finally, some 

conclusions along with a discussion on possible extensions for further research have been presented in 

Section 6. 

2. A review on unrestricted skew normal and GIG distributions 

2.1. Preliminaries 

Let 𝒁 be a 𝑝 × 1 random vector with SUN distribution with a 𝑝 × 1 location’s vector 𝜽, and a 

𝑝 ×  𝑝  scale matrix 𝚵  (which is positive definite), and a 𝑝 ×  𝑞  skewness parameters matrix 𝚷 , 

defined by 𝒁 ~ SUN𝑝,𝑞(𝜽, 𝚵, 𝚷). Then the probability density function (pdf) of 𝒁 is presented by: 

f(𝒛|𝜽, 𝚵, 𝚷) = 2𝑞𝜙𝑝(𝒛|𝜽, 𝚲)Φ𝑞(𝚷
⊤𝚲−1(𝒛 − 𝜽)|𝜞) , 𝐳 ∈ ℝ𝑝,    (1) 

such that Φ𝑞(⋅ |𝜞) and 𝜙𝑝(⋅ |𝜽, 𝚲) are the cumulative density function (cdf) and pdf of 𝑁𝑞(𝟎, 𝜞) and 

𝑁𝑝(𝜽, 𝚲)  distributions, respectively, 𝚲 = 𝚵 + 𝚷𝚷⊤ , and 𝜞 = 𝐈𝑞 − 𝚷
⊤𝚲−1𝚷 = (𝐈𝑞 + 𝚷

⊤𝚵−1𝚷)
−1

 

(See Arellano-Valle and Genton [2] for more details). The multivariate SUN distribution defined in (1) 

recover the multivariate normal distribution with zero skewness, when 𝚷 = 𝟎, the multivariate RSN, 

when 𝑞 = 1. 

The stochastic representation of 𝒁 ~ SUN𝑝,𝑞(𝜽, 𝚵, 𝚷) is given by: 

𝒁 = 𝜽 + 𝚷|𝑿𝟎| + 𝚵
1 2⁄ 𝑿1 ,        (2) 

such that 𝑿0 and 𝑿1 are independent and follow 𝑁𝑞(𝟎, 𝐈𝑞) and  𝑁𝑝(𝟎, 𝐈𝑝), respectively. Using Eq (2), 

we concluded that E[𝒁] = 𝜽 + √2 π⁄ 𝚷𝟏𝑝 and Var[𝒁] = 𝚲 −
2

π
𝚷𝟏𝑞𝟏𝑞

⊤𝚷⊤, such that 𝟏𝑞 is a vector of 

length 𝑞 with all elements equal to 1. (Note that the Eqs (1) and (2) with more details are described in 

Arellano-Valle and Genton [2].) 
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The HTH random variable 

𝐘 = 𝜽 + κ(𝑈)1 2⁄ 𝒁,         (3) 

where κ(⋅) is a positive function of scale mixer variable 𝑈 is called scale mixtures of SUN family. Also, 

note that the 𝑈 follows GIG distribution and independent of 𝒁. 

2.2. Some details of the GIG distribution 

The GIG of distribution has a positive support and so is a natural candidate for the variable 𝑈 

(that is the scale mixer variable) in the stochastic representation (3) (see Good [13] and Barndorff-

Nielsen and Halgreen [4]). Such choices lead to the construction of a highly workable multivariate 

class of unified distributions suitable for multivariate statistical analysis. In terms of its 

parameterization, there exist several (equivalent) representations of the GIG distributions, that in our 

methodology (and Bayesian framework), there are closed-form posterior distributions and some 

simplifications to adopt its representation. The pdf of the GIG random variable 𝑈 (that is denoted by 

𝑈 ~ 𝐺𝐼𝐺∗(𝜐, 𝜓, 𝜂)) is as follows: 

𝒢ℐ𝒢∗(𝑢|𝜐, 𝜓, 𝜂) =
(𝑢 𝜂⁄ )𝜐−1

2𝜂𝐾𝜐(𝜓)
exp (−

𝜓

2
(
𝑢

𝜂
+
𝜂

𝑢
)) ;   𝑢 ∈ ℝ+, 𝜓 > 0, 𝜂 > 0, −∞ < 𝜐 < +∞.  (4) 

such that  𝐾𝑡(𝑦) is the third kind of order t modified “Bessel” function which is evaluated at point 𝑦. 

It can be computed that 

rs = E(U
s 2⁄ ) =

Kυ+s 2⁄ (ψ)

Kυ(ψ)
ηs 2⁄ , s = 1,2, …       (5) 

In the Bayesian framework (posteriors), we can consider another form of 𝑈 ~ 𝐺𝐼𝐺∗(𝜐, 𝛾, 𝜌) with 

the following pdf: 

𝒢ℐ𝒢∗(𝑢|𝜐, 𝛾, 𝜌) = (
𝛾

𝜌
)
𝜐 𝑢𝜐−1

2𝐾𝜐(𝜌𝛾)
exp (−

1

2
(
𝜌2

𝑢
+ 𝛾2𝑢)) ;  𝑢 ∈ ℝ+ , 𝛾 > 0, 𝜌 > 0, −∞ < 𝜐 < +∞. (6) 

Finally, note that the HTH distributions have been constructed by using the GIG distributions for 

scale mixer variable 𝑈 and multivariate SUN random variable in the representation (3). 

3. A review on HTH distributions 

As mentioned in the previous sections, a random vector 𝒀 has a HTH distribution if it has the 

following stochastic representation 

𝒀 = 𝜽 + 𝚷𝑿 + 𝜅(𝑈)1 2⁄ 𝚵1 2⁄ 𝑿1,        (7) 

such that 𝜽 , 𝚵  and 𝚷  are location’s vector, dispersion’s matrix and skewness (or shape) matrix, 

respectively, 𝑿 = 𝜅1 2⁄ (𝑈)|𝑿0| , 𝑿0 , 𝑿1  and 𝑈  are independent distributed as  𝑁𝑞(𝟎, 𝐈𝑞) ,  𝑁𝑝(𝟎, 𝐈𝑝) 

and 𝐺𝐼𝐺∗(𝜐, 𝜓, 𝜂) , respectively. It is clear that the conditional distribution of 𝐘  given 𝑈 = 𝑢  is as 

𝒀|𝑈 = 𝑢 ~ 𝑆𝑈𝑁𝑝,𝑞(𝜽, 𝜅(𝑢)𝚵 , κ(𝑢)
1 2⁄  𝚷), and therefore the pdf of 𝒀 is as follows: 
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g(𝒚|𝜽, 𝚵, 𝚷, 𝝁) = 2𝑞 ∫ 𝜙𝑝(𝒚|𝜽, 𝜅(𝑢)𝚲)Φ𝑞(𝜅(𝑢)
−1 2⁄ 𝚷⊤𝚲−1(𝒚 − 𝜽)|𝜞)

∞

0
𝒢ℐ𝒢∗(𝑢|𝝁)𝑑𝑢, 𝒚 ∈ ℝ

𝑝, (8) 

such that 𝝁 = (𝜐, 𝜓, 𝜂)⊤. In the next, HTH random vector 𝒀 is represented by 𝒀~HTH(𝜽, 𝚵, 𝚷, 𝝁). It 

should be noted that the pdf given in Eq (8) is a reparameterization of the HTH pdf in Murray et al. [27]. 

In order to have identifiability of the proposed HTH distributions there exist some concerns 

relating to the skewness matrix 𝚷 and GIG parameters 𝝁. Note in the pdf given in Eq (8), for any 

positive value 𝑐 , (𝜽, 𝑐𝚵, 𝑐𝚷, 𝜐, 𝜓 𝑐⁄ , 𝑐𝜂)  and (𝜽, 𝚵, 𝚷, 𝜐, 𝜓, 𝜂)  have similar densities, so to solve this 

identifiability issue let 𝜂 = 1  and consequently 𝝁 = (𝜐, 𝜓)⊤ . Furthermore, sorting the skewness 

matrix 𝚷 using a norm to its columns (or employing a methodology similar to Bai and Li [3] to identify 

a factor loadings matrix) is necessary to verify the identifiability of HTH distributions and the same is 

true for our proposed MFA model. Varying the distributions of 𝑈 to the 𝐺𝐼𝐺∗(𝝁) family conducts to 

have different members of the HTH class. So, by considering 𝜅(𝑢) = 𝑢 and different distributions of 

𝑈 from 𝐺𝐼𝐺∗(𝝁) family, we have: 

g(𝒚|𝜽, 𝚵, 𝚷,𝝓) = 2𝑞𝒢ℋ𝑝(𝒚|𝜽, 𝚲, 𝟎, 𝝂
′)𝐺𝐻𝑞(𝑩|𝟎, 𝜞, 𝟎, 𝝂

′′), 𝒚 ∈ ℝ𝑝,    (9) 

such that 𝐺𝐻𝑞 and 𝒢ℋ𝑝 are respectively referred to the cdf of the q-variate generalized hyperbolic and 

pdf of the p-variate generalized hyperbolic (GH; Barndorff-Nielson and Halgreen [4]) distributions 

and 𝚲 = 𝚵 + 𝚷𝚷⊤ , 𝜞 = 𝑰𝑞 −𝚷
⊤𝚲−1𝚷,  𝑩 = 𝚷⊤𝚲−1(𝒚 − 𝜽) , 𝝂′ = (𝜐,√𝜓/𝜂,√𝜓𝜂)

⊤
 , 𝝂′′ = (𝜐 −

𝑝 2⁄ ,√𝜓/𝜂, 𝑞′(𝒚))
⊤

 and 𝑞′(𝒚)2 = (𝒚 − 𝜽)⊤𝚲−1(𝒚 − 𝜽) + 𝜓𝜂 . Note when 𝑞 = 1 , the HTH 

distributions are reduced to restricted cases, called the skew-normal Generalized-Hyperbolic (SNGH; 

Murray et al. [27]) distributions, which involve the known distributions such as the skew-normal (SN), 

skew-Laplace (SLP), skew Pearson type VII (SP-VII), skew-slash (SSL) distributions, skew-t (ST) and 

skew-contaminated normal (SCN). In the case of unrestricted case (𝑞 > 1), the HTH distributions are 

an extension of the maintained distributions and also in the case of symmetric 𝚷 = 𝟎, it becomes the 

symmetrical GH distribution. For both FA and MFA approaches according to the multivariate scale 

mixtures of skew-normal (SMSN; Branco and Dey [6]) and restricted SN distributions, in order to 

have the identifiability of the model, the factor scores or the error term of the model must be 

symmetrically distributed, which is a main restriction (see e.g., Lin et al. [21] and Kim et al. [16]). 

However, note that the HTH family has an important advantage, particularly its usage in MFA models 

in which both of the factor and error terms have been distributed in the class of HTH with zero means. 

4. Mixture of factor analysis model based on the HTH 

4.1. HTH factor analyzer (HTH-FA) model 

In the following, a FA model using the HTH distributions is developed. Specifically, the HTH-FA 

given by 
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{
 
 
 

 
 
 
𝒀𝑗 = 𝜽 + 𝑳𝑭𝑗 + 𝝐𝑗;    𝑭𝑗 ⊥ 𝝐𝑗 ,                 

                

𝑭𝑗

 
 𝑖𝑖𝑑
~
 

 𝐻𝑇𝐻(𝚺−1 2⁄ 𝜽f, 𝚺
−1, 𝚺−1 2⁄ 𝚷f, 𝝁),

𝝐𝑗

 
 𝑖𝑖𝑑
~
 

𝐻𝑇𝐻(𝜽e, 𝑫, 𝚷e, 𝝁),                         

;         𝑗 = 1, … , 𝑛,   (10) 

is first considered, where 𝒀𝑗  and 𝜽  are respectively the observations and location’s vector (𝑝 -

dimensional), the 𝑝 ×𝑚  𝑳  matrix is factor loadings, 𝑭𝑗  is latent variable (that is a 𝑚 -dimensional 

vector of factors (𝑚 < 𝑝) and can be asymmetric or symmetric, and heavy or light-tailed) and 𝝐𝑗 is 

error’s vector (that can be asymmetric or symmetric, and heavy or light-tailed), 𝜽e = 𝜏𝚷e𝟏𝑝, 𝜽f =

𝜏𝚷f𝟏𝑞 , 𝜏 = −√2 𝜋⁄ 𝑟1 , 𝚺 = 𝑟2𝑰𝑚 + 𝚷f𝑪𝑞𝚷𝐟
⊤ , 𝑪𝑞 = (𝑟2 − 𝑟1

2)
2

𝜋
𝟏𝑞𝟏𝑞

⊤ + (1 −
2

𝜋
) 𝑟2𝑰𝑞  with positive 

definite dispersion matrices 𝑫 = diag(𝐷1, … , 𝐷𝑝)  and 𝚺−1  with dimensions 𝑝 × 𝑝  and 𝑚 ×𝑚 , 

respectively, 𝚷e = diag(𝝕e)  is the 𝑝 × 𝑝  diagonal skewness matrix, and 𝚷f  is the 𝑚 × 𝑞  skewness 

matrix. Also note that  

𝐸[𝑭𝑗] = 𝐸[𝝐𝑗] = 𝟎, 

Cov[𝑭𝑗] = 𝑰𝑚, 

Cov[𝝐𝑗] = 𝛀 = 𝑟2𝑫 +𝚷e𝑪𝑝𝚷e
⊤ 

𝐸[𝒀𝑗] = 𝜽, 

and 

Cov[𝒀𝑗] = 𝑳𝑳
⊤ +𝑫. 

Due to the HTH properties, we have 

(
𝑭𝑗
𝝐𝑗
)

 
 𝑖𝑖𝑑
~
 

 𝐻𝑇𝐻 ((
𝜽f
𝜽e
) , (

𝚺−1 𝟎𝑚×𝑝
𝟎𝑝×𝑚 𝑫

) , (
𝚺−1 2⁄  𝚷f 𝟎𝑚×𝑝
𝟎𝑝×𝑞     𝚷e

) , 𝝁) ,    𝑗 = 1,… , 𝑛.  (11) 

We call this FA model as HTH-FA. As a special case, the HTH-FA involves the skew-normal 

factor analyzer (SNFA) model that considered by Lin et al. [32] when 𝑞 = 1 and the latent factor 𝑈 is 

a degenerated random variable at 1. According to the HTH properties, we have that 

𝒀𝑗

 
 𝑖𝑛𝑑.
~
 

 𝐻𝑇𝐻(𝜽 + 𝜏𝜶𝟏𝑘, 𝚵, 𝜶, 𝝁),   𝑗 = 1,… , 𝑛,      (12) 

such that 𝑘 = 𝑝 + 𝑞 , 𝜶 = (𝑳̃𝚷f    𝚷e)𝑝×𝑘  and 𝚵 = 𝑳̃𝑳̃⊤ +𝑫  where 𝑳̃ = 𝑳𝚺−1 2⁄ .  Consequently, the 

parameters of the model can be summarized by 𝛀 = (𝜽, 𝑳, 𝑫, 𝚷f, 𝚷e, 𝝁) which we need to estimate 

them. 

According to Eq (12), the pdf of response is consequently presented by 

𝒻(𝒚𝑗|𝛀) = 2
𝑘 ∫ 𝜙𝑝(𝒚𝑗|𝜽 + 𝜏𝜶𝟏𝑘, 𝜅(𝑢)𝚲)Φ𝑘(𝜅(𝑢)

−1 2⁄ 𝜶⊤𝚲−1(𝒔𝑗)|𝜞)
∞

0
𝒢ℐ𝒢∗(𝑢|𝝁)𝑑𝑢 , (13) 
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such that 𝚲 = 𝚵 + 𝜶𝜶⊤, 𝜞 = 𝑰𝑘 − 𝜶
⊤𝚲−1𝜶 and 𝒔𝑗 = 𝒚𝑗 − 𝜽 − 𝜏𝜶𝟏𝑘. 

If 𝜅(𝑢) = 𝑢, then we have 

𝒻(𝒚𝑗|𝛀) = 2
𝑘𝒢ℋ𝑝(𝒚𝑗|𝜽 + 𝜏𝜶𝟏𝑘, 𝚲, 𝟎, 𝝂1)𝐺𝐻𝑘(𝜶

⊤𝚲−1𝒔𝑗|𝟎, 𝜞, 𝟎, 𝝂2),   (14) 

where 𝝂1 = (𝜐,√𝜓,√𝜓)
⊤

 , 𝝂2 = (𝜐 − 𝑝 2⁄ ,√𝜓, 𝑞′(𝒚𝑗))
⊤

 , 𝑞′(𝒚𝑗)
2
= 𝒔𝑗

⊤𝚲−1𝒔𝑗 + 𝜓  where 𝚲  and 𝜞 

are defined in Eq (13). 

It is worth noting that according to statistical features of the HTH family, and the structure of the 

HTH-FA model given in Eq (10), the response vector 𝒀𝑗 given the latent factor 𝑭𝑗 has the conditional 

distribution given by 

𝒀𝑗|𝑭𝑗

 
 𝑖𝑛𝑑.
~
 

 𝐻𝑇𝐻(𝜽 + 𝑳𝑭𝑗 , 𝑫, 𝚷e, 𝝁),   𝑗 = 1,… , 𝑛.      (15) 

To guarantee the identifiability of the FA model, we consider the technique in Lin et al [22], and 

assume that the diagonal entries of the loading matrix 𝑳 are strictly positive and its upper-right triangle 

is equal to 0 (constraining the loading matrix 𝑳). Bai and Li [3] have considered the other approaches. 

4.2. Mixture of HTH factor analyzer (HTH-MFA) model 

A generalization of the proposed HTH-FA, is a mixture of the HTH-FA (called HTH-MFA). For 

𝑗 = 1,… , 𝑛, assume 𝒀𝑗 = (𝑌𝑗1, . . . , 𝑌𝑗𝑝) is the response raising from a heterogeneous population that is 

partitioned into 𝑔 groups. Define the membership variables or latent indicators 𝑍1, … , 𝑍𝑛such that the 

term  (𝑍𝑗 = 𝑖) means that the 𝑗-th vector variable belongs to the 𝑖-th component of the HTH-FA model, 

for 𝑖 = 1, … , 𝑔 . For 𝑗 = 1,… , 𝑛,  and 𝑖 = 1,… , 𝑔,  assume the probability mass function (pmf) of 

𝑍1, … , 𝑍𝑛  as 𝑃(𝑍𝑗 = 𝑖) = 𝜋𝑖;  where 𝜋𝑖 > 0  and ∑ 𝜋𝑖
𝑔
𝑖=1 = 1 . In terms of 𝑍𝑗 , for 𝑖 = 1,… , 𝑔 , we can 

conclude that each component of the HTH-MFA model follows the HTH-FA model give in Eq (10) by: 

{
 
 
 

 
 
 

𝒀𝑗 = 𝜽𝑖 + 𝑳𝑖𝑭𝑖𝑗 + 𝝐𝑖𝑗;   𝑭𝑖𝑗 ⊥ 𝝐𝑖𝑗 , with probability 𝑝𝑖,
    

𝑭𝑖𝑗

 
𝑖𝑖𝑑
~
 

𝐻𝑇𝐻(𝚺𝑖
−1 2⁄ 𝜽f𝑖 , 𝚺𝑖

−1, 𝚺𝑖
−1 2⁄ 𝚷f𝑖 , 𝝁𝑖),                               

𝝐𝑖𝑗

 
𝑖𝑖𝑑
~
 

𝐻𝑇𝐻(𝜽e𝑖 , 𝑫𝑖 , 𝚷e𝑖 , 𝝁𝑖),                                                         

;  𝑗 = 1, … , 𝑛, 𝑖 = 1, … , 𝑔,  (16) 

such taht 𝚺𝑖 = 𝑟2𝑰𝑚 +𝚷f𝑖𝑪𝑞𝚷f𝑖
⊤, and 𝑫𝑖 = diag(𝐷𝑖.1, … , 𝐷𝑖.𝑝) and  𝚺𝑖

−1 are dispersion matrices (that 

are also positive definite), 𝜽f𝑖 = 𝜏𝑖𝚷f𝑖𝟏𝑞 , 𝜽e𝑖 = 𝜏𝑖𝚷e𝑖𝟏𝑝 , 𝚷e𝑖 = diag(𝝕e𝑖)  and 𝝁𝑖 = (𝜐𝑖 , 𝜓𝑖
 )⊤, 𝑖 =

1,… , 𝑔. 

Using the Eqs (13) and (16), we have: 

g(𝒚𝑗|𝚫) = ∑ 𝑝𝑖𝒻(𝒚𝑗|𝛀𝑖)
𝑔
𝑖=1 ;    𝑗 = 1,… , 𝑛,       (17) 

such that 𝒻(𝒚𝑗|𝛀𝑖)  is the HTH pdf given in Eq (14) for each component and 𝛀𝑖 =

(𝜽𝑖 , 𝑳𝑖 , 𝑫𝑖 , 𝚷f𝑖 , 𝚷e𝑖 , 𝝁𝑖), where 𝚫 = (𝑝1, … , 𝑝𝑔−1, 𝛀1, … , 𝛀𝑔). The Likelihood function of the proposed 
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HTH-MFA model which is useful in the Bayesian approach is obtained in the Appendix. 

4.3. Bayesian approach on the HTH-MFA model 

As mentioned before, Bayesian methods are useful in statistical analysis with several advantages, 

some of which are mentioned in the literature (see e.g., Zhou et al. [32]). Now, we intend to a Bayesian 

framework to estimate the HTH-MFA model’s parameters. First, we consider prior distributions for 

the model parameters. Also, for the elements of  𝚫, the proper (weakly) informative and independent 

priors have been adopted. We represented the loading factor 𝑳̃𝑖 = [ℓ𝑖.𝑠𝑟] (ℓ𝑖.𝑠𝑟 are 𝑳̃𝑖 elements) matrix. 

So, the following priors are considered: 

𝒑 = (𝑝1, … , 𝑝𝑔) ~ 𝐷𝑖𝑟(𝛿1, … , 𝛿𝑔),   𝜽𝑖~ 𝑁𝑝(𝝃𝑖 , 𝑺𝑖), 

ℓ𝑖.𝑠𝑟 ~ 𝑁1(𝜃ℓ𝑖 , 𝜎ℓ𝑖
2 );  𝑠 > 𝑟,   ℓ𝑖.𝑟𝑟 ~ 𝑇𝑁1(𝜃ℓ𝑖 , 𝜎ℓ𝑖

2 ;  ℓ𝑖.𝑟𝑟 > 0), 

𝐷𝑖.𝑠 ~ 𝐼𝐺(𝜚𝑖 , 𝜉𝑖),   𝝕e𝑖 ~ 𝑁𝑝(𝒂𝑖 , 𝑨𝑖), 

𝚷f𝑖 ~ 𝑀𝑁𝑚,𝑞(𝑪f𝑖 , 𝑯f𝑖 , 𝑵f𝑖),   𝜏𝑖 ~ 𝑇𝑁1(𝜃𝜏𝑖 , 𝜎𝜏𝑖
2 ;  𝜏𝑖 < 0), 

such that 𝑀𝑁  referred to the Matrix-Normal distributions, and we assume that 𝜐𝑖 ~ 𝑁(𝜃𝑖 , 𝜎𝑖
2)  and 

𝜓𝑖
  ~ 𝐸(𝜍𝑖) where 𝐸(𝜍𝑖) denotes the exponential distribution with parameter 𝜍𝑖. The notations 𝐼𝐺 and 

𝐷𝑖𝑟, denote the “Inverse Gamma” and “Dirichlet” distributions, respectively. The maintained priors 

are assumed to be independent. The posterior 𝜋(𝚫, 𝑭̃, 𝒖, 𝒙, 𝒛|𝒚) ∝ 𝐿(𝚫|𝒚, 𝑭̃, 𝒖, 𝒙, 𝒛)𝜋(𝚫) , is not 

analytically tractable but using an MCMC methods, we employ the Metropolis-Hastings algorithms 

attributed to Gamerman [9] and the Gibbs sampling (Gelfand and Smith [10]) to generate samples by 

employing the following posteriors. The posterior distributions of the parameters of HTH-MFA model 

are obtained in the Appendix. 

4.4. Assigning of missing values 

The usefulness of the HTH-MFA hierarchical form is its simplicity for simulation or its usage in 

sampling from the posteriors using available software in Bayesian analysis such as NIMBLE 

(NIMBLE Development Team [28]). Note that some of the other Bayesian software such as JAGS and 

OpenBUGS are not able to inverse the matrices because of the lack of special functions, and so cannot 

draw a sample from the GIG distribution. An advantage of such ability in the parameter updates is to 

easily locate missing values and assign them from the model naturally. Let 𝒀𝑀 as the missing and 𝒀𝑂 

as the observed responses of HTH-MFA model, respectively. Posterior predictive distribution can help 

to assign the missing data in a Bayesian framework, 𝑃(𝒀𝑀|𝒀𝑂) = ∫𝑃(𝒀𝑀|𝒀𝑂, 𝛀) 𝑃(𝛀 | 𝒀𝑂)𝑑𝛀 . 

When dealing with missing data problems and the missing pattern is not known, it is not possible to 

directly simulate form the posterior predictive distribution, and the Gibbs sampling technique is 

employed with updated parameters with: 𝒚𝑖,𝑀
(𝑡+1)

 ~ 𝑃(𝒚𝑖,𝑀|𝒚𝑂, 𝛀
(𝑡))  for 𝑖 = 1,… , 𝑁  and 

𝛀(𝑡+1) ~ 𝑃(𝛀(𝒕)|𝒚𝑂, 𝒚𝑖,𝑀). To lead to convergence, the process is started with the initial values 𝒚𝑖,𝑀
(0)

and 

𝛀(0)  and a large number of iterations of the Gibbs algorithm is ran. This approach has been 

implemented in the paper using NIMBLE and can be extended in situations with missing data which 

may be due to other covariates. 
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5. Applications 

This study was conducted to evaluate the flexibility and performance of the introduced HTH-

MFA model using simulations and real datasets. 

5.1. Priors and details of computation 

Largely non-informative priors have used for estimation with different models as follows: 

𝜽 ~ 𝑁2(𝟎, 10
2𝑰2) , 𝝕𝑖~ 𝑁2(𝟎, 10

2𝑰2) , ℓ𝑖.𝑟𝑟 ~ 𝑇𝑁1(0, 100)𝐼(ℓ𝑖.𝑟𝑟 > 0)    ℓ𝑖.𝑟𝑡 ~ 𝑁1(0, 100);  𝑟 > 𝑡, 
and 𝐷𝑖.𝑟 ~ 𝐼𝐺(1,1)  for 𝑖 = 1,2  and 𝒑 ~ 𝐷𝑖𝑟(1,… ,1)   Note that 35,000 iterations have been used for 

Gibbs sampling runs with burn-in of 10,000. Also, the statistic attributed to Gelman and Rubin [11] and 

the visual inspection needed for convergence criteria have been employed. Models developed by 

NIMBLE and all computations have also been verified. To overcome the label switching issue over 

the MCMC iterations, maximum a posteriori (MAP) estimate has been used. To prevent some common 

computational issues in the factor analysis, the scale function in R to scale the examined datasets has 

been used. The models’ performance has been evaluated by using some model selection criteria and 

comparing the classification accuracy. To study the accuracy of classification, the adjusted Rand Index 

(ARI) attributed by Hubert and Arabie [15]. The range of ARI is between 0 to 1 where 0 is without any 

match and 1 is perfect match. 

5.2. First simulation 

To evaluate the performance within the HTH-MFA class, first, data from a particular HTH-MFA 

model has been simulated, and then the model is compared with other HTH-MFA members based on 

the adjusted Rand Index (See Figures 1 and 2 and Table 1). 

Dataset has been first simulated from the HTH-MFA model given in Eq (10) with three 

components, 𝑝 = 5, 𝑚 = 3 and 𝑞 = 2, where: 

𝜽𝑖 = 𝟎;   𝑫𝑖 = diag(0.5); 𝝁𝑖 = (−0.5,1)
⊤;  𝚷e𝑖 = 𝟎;  𝑖 = 1,2,3., 

𝚷f1 = (
6 2
3 6
0 3

) ;  𝚷f2 = (
−0.1    0.4
   0.1 −0.2
−0.6    0

) ;  𝚷f3 = (
−1 −4
−2 −2
−4 −1

), 

with loading matrix 

𝐋𝑖 =

(

 
 

0.8 0.0 0.0
0.1 0.1 0.2
0.1
0.2
0.1

0.3
0.0
0.3

0.1
0.3
0.0)

 
 
, 𝑖 = 1,2,3., 

for all three components, and mixture weights (𝜋1 = 100 500⁄  , 𝜋2 = 150 500⁄  , 𝜋3 = 250 500⁄  ), 

corresponding to sample sizes 𝑛1 = 150, 𝑛2 = 150 and 𝑛3 = 250. 



15846 

AIMS Mathematics  Volume 9, Issue 6, 15837–15856. 

 

Figure 1  Scatterplot for the pairs of simulated data with indicative colors component 

labels (Black = Component 1, Red = Component 2, Green = Component 3). 

 

Figure 2  Pairwise scatterplot for the factor scores with indicative colors component labels 

(Black = Component 1, Red = Component 2, Green = Component 3). 

Figures 1 and 2 show the scatterplots for each pair of the simulated data and their first three factors, 

respectively. As it can be observed in Table 1, the HTH-MFA with 𝑚 = 3 and 𝑞 = 2 has the maximum 
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ARI and consequently the best performance. Because the factor scores are not heavy-tailed, the HTH-

MFA model has similar performance (based on the classification score) to the HTH-MFA for 𝑚 = 2, 

but with other model selection measures such situation does not exist. Moreover, the SN-MFA model 

has the worst performance, because it does not allow us to consider long -tails for the distribution of 

true factor scores. 

Table 1  The adjusted Rand Index (ARI) for model selection criteria with different models 

Model SN-MFA1 SNGH-MFA2 HTH-MFA(q=2) HTH-MFA(q=3) 

2-component 0.68 0.80 0.87 0.82 

3-component 0.76 0.84 0.95* 0.86 

4-component 0.74 0.81 0.90 0.79 

*: The bold value is corresponding to the best model. 
1: SN-MFA: skew normal mixture of factor analyzers. 
2: SNGH-MFA: skew normal generalized hyperbolic mixture of factor analyzers with 𝑞 = 1. 

5.3. Second simulation 

According to suggestion of a reviewer to show importance and performance of the proposed MFA 

model than the ordinary MFA models, we consider the previous simulation (in the previous section) of 

our proposed MFA model, but in the two cases of light and heavy tailed-ness (each one with 500 

samples), respectively, given by 𝝁𝑖 = (20,15)
⊤;  𝑖 = 1,2,3 , and 𝝁𝑖 = (0.1,2)

⊤;  𝑖 = 1,2,3 . We fitted 

the HTT-MFA and two ordinary light-tailed Gaussian MFA and heavy-tailed Student-t MFA models, 

and numbers of correct estimations of the number of groups (components) are listed in Table 2. 

Table 2  Numbers (percentages) of the correct number of components estimated of the 

HTH-MFA simulations. 

Model Model Gaussian-MFA Student-t-MFA HTH-MFA 

Light-tailed 

2-component 369 (73.8%) 388 (77.6%) 45 (9%) 

3-component 91 (18.2%) 101 (20.2%) 437 (87.4%) 

4-component 40 (8%) 11 (2.2%) 18 (3.6%) 

Heavy-tailed 

2-component 18 (3.6%) 270 (54%) 33 (6.6%) 

3-component 70 (14%) 201 (40.2%) 424 (84.8%) 

4-component 412 (82.4%) 29 (5.8%) 43 (8.6%) 

It can be seen from results in Table 3, in the cases of the HTH-MFA datasets (in fact the datasets 

with asymmetrical and including outliers), the ordinary MFA models have under-estimates and over-

estimates of the true number of components, while the heavy-tailed Student-t MFA model has better 

performance than the light-tailed Gaussian MFA model. 

5.4. Real datasets 

In this part, we consider three real datasets with the following details, and then we fitted the 

proposed MFA models in the previous part for clustering and semi-supervised classification on them. 
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We recorded the ARI index for evaluating the fitness, because the true classes of the points that are 

treated as un-labeled are actually known. 

The first dataset is the Australian Institute of Sport (AIS) data for 100 female and 102 male 

athletes, which contains 11 continuous variables (these data are available in the Australasian Data and 

Story Library; Smyth [20]). 

The second dataset is the Sonar data, which Gorman and Sejnowski [14] report this data on 

patterns obtained by bouncing sonar signals off a metal cylinder and rocks, respectively, at various 

angles and under various conditions. These data also are available from the UCI machine learning 

repository. In the data 111 signals are recorded by bouncing sonar signals off a metal cylinder and 97 

are recorded by bouncing sonar signals off rocks. To illustrate the MFA approaches for semi-supervised 

classification, half of the 208 patterns (60 of the metal signals and 44 of the rock signals) are selected 

(randomly) to be treated as un-labeled, and the proposed models are fitted to these data, for semi-

supervised classification. 

The third dataset is the Hawks dataset (Stat2Data R package [7]), which includes the data of three 

species of copper, sharp-legged and red-tailed hawks. Overall, this data contains 19 features 908 valid 

observations. The concentration has been on the length of primary wing feather, the hallux length, the 

culmen length, the tail length (all of them based on mm) and the weight (gr) of. We fit the proposed 

MFA approaches to classify the three species. 

For all of datasets we fit the HTH-MFA models with 𝑔 = 2, 𝑚 =  1, . . . , 6, 𝑞 =  1, . . . , 6, and 

𝑞 ≤ 𝑚. Also, for comparison, we also fit the (light-tailed) SN-MFA and (heavy-tailed) SNGH-MFA 

models for 𝑔 = 2  and 𝑚 =  1, . . . , 6 . The best fitted models were based on the 𝑚 = 2  and 𝑞 = 2 , 

which their ARI are given in Table 3. 

Table 3. The adjusted Rand Index (ARI) for model selection criteria with different models 

for AIS, Sonar and Hawks datasets with 𝒎 = 𝟐 and 𝒒 = 𝟐. 

Model SN-MFA SNGH-MFA HTH-MFA(q=2) 

AIS 0.80 0.85 0.93 

Sonar 0.35 0.46 0.62 

Hawks 0.86 0.88 0.91 

To see the advantage of the proposed Bayesian technique, we consider experiments on the 

proposed real datasets by evaluating the applicability of the HTH-MFA classification, and also related 

errors concerning missing dataset context. The hierarchical form of the HTH-MFA allows us to code 

and perform the MCMC technique for the model estimations in NIMBLE. Additionally, assigning 

missing values (i.e., conditional means) from the full MFA model is relatively facilitated. In this 

experiment, some values of the datasets in the form of randomness under two levels of low missingness 

(5%) and moderate missingness (15%) have been deleted and the total sample is obtained. Then, the 

performance of assigning values has been compared using the model based on the conditional 

technique, or according to the mean assigning based on the unconditional approach, where the means 

are considered instead of the missing values. 

The mean squared error (MSE) is also computed by: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝒚𝑗

𝑚 − 𝒚̂𝑗
𝑚)

⊤
(𝒚𝑗

𝑚 − 𝒚̂𝑗
𝑚),

𝑛

𝑗=1
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such that 𝒚 ̂  is the imputed value for 𝒚 . Note that the total number of missing values is 𝑛∗ =

 ∑ (𝑝 − 𝑝𝑗
𝑜𝑛

𝑗=1 ). 

Table 4 reports the means and standard deviations (in parenthesis) of the ARI and MSE for the 

conditional (C) and unconditional (UC) models based on 50 replications in the datasets for two 

different  maintained missingness rate scenarios (5% or 15%). 

Table 4. The MSE and ARI for AIS, Sonar and Hawks datasets (with missing data). 

 HTH-MFA (UC) HTH-MFA (C) 

 MSE ARI MSE ARI 

Missing Rate (%) 5% 15% 5% 15% 5% 15% 5% 15% 

AIS Dataset 
0.54 

(0.66) 

0.55 

(0.56) 

0.80 

(0.03) 

0.71 

(0.02) 

0.41 

(0.23) 

0.44 

(0.17) 

0.88 

(0.0) 

0.82 

(0.0) 

Sonar Dataset 
0.62 

(0.53) 

0.51 

(0.33) 

0.56 

(0.01) 

0.46 

(0.02) 

0.53 

(0.40) 

0.37 

(0.13) 

0.61 

(0.01) 

0.50 

(0.01) 

Hawks Dataset 
0.56 

(0.71) 

0.54 

(0.39) 

0.84 

(0.02) 

0.85 

(0.03) 

0.48 

(0.40) 

0.49 

(0.21) 

0.89 

(0.0) 

0.86 

(0.0) 

According to the MSE and ARI from Table 3, for two maintained unconditional and conditional 

scenarios from all three datasets, the conditional HTH-MFA (C) model has clearly better performance 

than the unconditional HTH-MFA (UC) model. 

From the Hawks dataset, we had similarity about the mean squared error and the performance of 

the classification for both types of models. This seems to indicate that the number of needed factors to 

represent the data is equal to 1. For other datasets, the results differ with Hawks dataset and there is a 

greater sensitivity on the missing data imputation technique. When there is just a single missing value, 

an alternative way for the unconditional approach is Listwise deletion (the entire record is removed). 

This method can be applied only for large samples, and in most applications where the FA model is 

commonly used is rare. Thus, using the full model in the conditional approach is often preferred and 

used but it is dependent on the availability and simplicity of using the computational approach in 

practice. 

6. Discussion and conclusions 

In this work, using a Bayesian framework, a flexible class of multivariate HTH distributions was 

employed to analyze MFA models. The estimation of the parameters of the MFA model based on HTH 

family was relatively straightforward with a Bayesian approach. As the HTH distributions are suitable 

to model the asymmetric data with/without outliers, it can be used in the robust statistical inferences. 

Various extensions to the HTH-MFA model can be considered for future works, such as more general 

arrangement of a structural equation model based on the HTH distributions or extending ordinary 

available models with sparse covariance structures. Also, to improve estimates, more informative 

priors (such as empirically derived or known a priori algorithm) on the variance of the noisy settings 

or the error term have been considered. 
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Appendix 

A 1  Likelihood function of the HTH-MFA model 

Let the complete data with 𝑪 = {𝒀,𝑼, 𝑿, 𝒁} , 𝑳̃𝑖 = 𝑳𝑖𝚺𝑖
−1 2⁄

  and 𝑭̃𝑖𝑗 = 𝚺𝑖
1 2⁄ 𝑭𝑖𝑗 , according to the 

stochastic form of the HTH family given in Eq (7) and the conditional distribution given in Eq (15), 

HTH-MFA model can be hierarchically presented by: 

𝒀𝑗|𝑭̃𝑖𝑗 , 𝑿e𝑖𝑗 = 𝒙e𝑖𝑗 , 𝑍𝑗 = 𝑖 

 
 𝑖𝑛𝑑.
~
 

 𝑁𝑝(𝜽𝑖 + 𝑳̃𝑖𝑭̃𝑖𝑗 + 𝜽e𝑖 + 𝚷e𝑖𝒙e𝑖𝑗 , 𝜅(𝑢𝑖𝑗)𝑫𝑖), 𝑈𝑖𝑗 = 𝑢𝑖𝑗, 

𝑭̃𝑖𝑗|𝑿f𝑖𝑗 = 𝒙f𝑖𝑗 , 𝑍𝑗 = 𝑖 

 
 𝑖𝑛𝑑.
~
 

 𝑁𝑚(𝜽f𝑖 + 𝚷f𝑖𝒙f𝑖𝑗 , 𝜅(𝑢𝑖𝑗)𝑰𝑚), 𝑈𝑖𝑗 = 𝑢𝑖𝑗, 

𝑿e𝑖𝑗|𝑈𝑖𝑗 = 𝑢𝑖𝑗 , 𝑍𝑗 = 𝑖 

 
 𝑖𝑛𝑑.
~
 

 𝑇𝑁𝑝(𝟎, 𝜅(𝑢𝑖𝑗)𝑰𝑝;  𝑿e𝑖𝑗 > 𝟎), 

𝑿f𝑖𝑗|𝑈𝑖𝑗 = 𝑢𝑖𝑗 , 𝑍𝑗 = 𝑖 

 
 𝑖𝑛𝑑.
~
 

 𝑇𝑁𝑞(𝟎, 𝜅(𝑢𝑖𝑗)𝑰𝑞;  𝑿f𝑖𝑗 > 𝟎), 

𝑈𝑖𝑗|𝑍𝑗 = 𝑖 

 
 𝑖𝑛𝑑.
~
 

 𝐺𝐼𝐺∗(𝝁𝑖), 

𝑃(𝑍𝑗 = 𝑖) = 𝑝𝑖, 

such that 𝑇𝑁𝑘(𝒎, 𝑴;  𝑿 > 𝒓) is referred to the truncated k-variate normal on the space 𝑿 > 𝒓 with 

mean and covariance 𝒎  and 𝑴 , respectively, before truncation, where its pdf presented by 

𝑇𝜙𝑘(𝒙|𝒎, 𝑴; 𝒓). Consequently, we have: 

𝒀𝑗|𝑭̃𝑖𝑗 , 𝑿e𝑖𝑗 = 𝒙e𝑖𝑗 , 𝑍𝑗 = 𝑖 

 
 𝑖𝑛𝑑.
~
 

 𝑁𝑝(𝜽𝑖 + 𝑳̃𝑖𝑭̃𝑖𝑗 + 𝚷e𝑖𝒙e𝑖𝑗 , 𝜅(𝑢𝑖𝑗)𝑫𝑖), 𝑈𝑖𝑗 = 𝑢𝑖𝑗, 

𝑭̃𝑖𝑗|𝑿f𝑖𝑗 = 𝒙f𝑖𝑗 , 𝑍𝑗 = 𝑖 

 
 𝑖𝑛𝑑.
~
 

 𝑁𝑚(𝚷f𝑖𝒙f𝑖𝑗 , 𝜅(𝑢𝑖𝑗)𝑰𝑚), 𝑈𝑖𝑗 = 𝑢𝑖𝑗, 

𝑿e𝑖𝑗|𝑈𝑖𝑗 = 𝑢𝑖𝑗 , 𝑍𝑗 = 𝑖 

 
 𝑖𝑛𝑑.
~
 

 𝑇𝑁𝑝(𝜏𝑖𝟏𝑝, 𝜅(𝑢𝑖𝑗)𝑰𝑝;  𝑿e𝑖𝑗 > 𝜏𝑖𝟏𝑝), 

𝑿f𝑖𝑗|𝑈𝑖𝑗 = 𝑢𝑖𝑗 , 𝑍𝑗 = 𝑖 

 
 𝑖𝑛𝑑.
~  𝑇𝑁𝑞(𝜏𝑖𝟏𝑞, 𝜅(𝑢𝑖𝑗)𝑰𝑞;  𝑿f𝑖𝑗 > 𝜏𝑖𝟏𝑞), 

https://doi.org/10.1080/00273171.2012.658339
https://doi.org/10.1007/s11336-010-9174-4
https://doi.org/10.1109/TR.2023.3263940
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𝑈𝑖𝑗|𝑍𝑗 = 𝑖 

 
 𝑖𝑛𝑑.
~
 

 𝐺𝐼𝐺∗(𝝁𝑖), 

𝑃(𝑍𝑗 = 𝑖) = 𝑝𝑖. 

The complete augmented likelihood function of 𝚷 based on the above hierarchical representations 

can be written by: 

𝐿(𝚫|𝑪) = ∏ ∏ {𝑝𝑖𝜙𝑝(𝒚𝑗|𝜽𝑖 + 𝑳̃𝑖𝑭̃𝑖𝑗 + 𝚷e𝑖𝒙e𝑖𝑗 , 𝜅(𝑢𝑖𝑗)𝑫𝑖)𝜙𝑚(𝑭̃𝑖𝑗|𝚷f𝑖𝒙f𝑖𝑗 , 𝜅(𝑢𝑖𝑗)𝑰𝑚) ×
𝑔
𝑖=1

𝑛
𝑗=1

𝑇𝜙𝑝(𝑿e𝑖𝑗|𝜏𝑖𝟏𝑝, 𝜅(𝑢𝑖𝑗)𝑰𝑝;  𝜏𝑖𝟏𝑝) 𝑇𝜙𝑞(𝑿f𝑖𝑗|𝜏𝑖𝟏𝑞, 𝜅(𝑢𝑖𝑗)𝑰𝑞;  𝜏𝑖𝟏𝑞) × 𝒢ℐ𝒢∗(𝑢𝑖𝑗|𝝁𝑖)𝑃(𝑍𝑗 = 𝑖)}. 

A 2  Posteriors 

Let 𝑛𝑖   as the number of observations which devoted to the i-th component of HTH-FA, 𝐵𝑖 =

{𝑗: 𝑧𝑗 = 𝑖}, and 𝚫(−𝑚) as the parameters set excluding the parameter 𝑚. Except the derived parameters 

of the scale mixer variable, all of the other conditional posteriors of the THT-MFA model parameters 

have the following closed form: 

𝒑|𝚫(−𝒑), 𝒚, 𝑭̃, 𝒙, 𝒖, 𝒛 ~ 𝐷𝑖𝑟(𝛿𝑝.1, … , 𝛿𝑝.𝑔), 

such that 𝛿𝑝.𝑖 = 𝛿𝑖 + 𝑛𝑖;  𝑖 = 1,… , 𝑔. 

𝜽𝑖|𝚫(−𝜽𝑖), 𝒚, 𝑭̃, 𝒙, 𝒖, 𝑧𝑗 = 𝑖  ~ 𝑁𝑝(𝝃𝑖.𝑝, 𝑺𝑖.𝑝),   𝑖 = 1,… , 𝑔, 

such that 

𝑺𝑖.𝑝 = (𝑺𝑖
−1 + ∑ 𝜅−1(𝑢𝑖𝑗)𝑫𝑖

−1 
𝐵𝑖

)
−1

, 

And 

𝝃𝑖.𝑝 = 𝑺𝑖.𝑝 [𝑺𝑖
−1𝝃𝑖 +∑ 𝜅−1(𝑢𝑖𝑗)𝑫𝑖

−1(𝒚𝑗 − 𝑳̃𝑖𝑭̃𝑖𝑗 − 𝚷e𝑖𝒙e𝑖𝑗)
𝐵𝑖

]. 

ℓ𝑖.𝑠𝑟|𝚫(−ℓ𝑖.𝑠𝑟), 𝒚, 𝑭̃, 𝒙, 𝒖, 𝑧𝑗 = 𝑖  ~ 𝑁1(𝜃ℓ𝑖.𝑝, 𝜎ℓ𝑖.𝑝
2 ), 

such that 

𝜎ℓ𝑖.𝑝
2 =

1

𝜎ℓ𝑖
−2+∑ 𝐷𝑖.𝑠

−1𝜅−1(𝑢𝑖𝑗)𝐹̃𝑖𝑗.𝑟
2

𝐵𝑖

. 

And 

𝜃ℓ𝑖.𝑝 = 𝜎ℓ𝑖.𝑝
2 [𝜃ℓ𝑖 𝜎ℓ𝑖.

2⁄ + ∑ 𝐷𝑖.𝑠
−1𝜅−1(𝑢𝑖𝑗)𝐹̃𝑖𝑗.𝑟(𝑦𝑗.𝑠 − 𝜃𝑖.𝑠 − 𝓵𝑖.𝑠(−𝑟)

⊤ 𝑭̃𝑖𝑗 −𝜛e𝑖.𝑠𝑥e𝑖𝑗.𝑠)𝐵𝑖 ], 

for 𝑟 = 1,… ,𝑚; 𝑠 = 1,… , 𝑝;  𝑗 = 1,… , 𝑛; 𝑖 = 1,… , 𝑔, such that 𝑦𝑗.𝑠, 𝑥e𝑖𝑗.𝑠, 𝜛e𝑖.𝑠 and 𝜃𝑖.𝑠 are the s-th 

components of 𝒚𝑗, 𝒙e𝑖𝑗 , 𝝕e𝑖 , and 𝜽𝑖, 𝓵𝑖.𝑠 and 𝐹̃𝑖𝑗.𝑟 are the s-th row and the r-th component of 𝑳𝑖 and 

𝑭̃𝑖𝑗, respectively. 
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Moreover, we have: 

ℓ𝑖.𝑟𝑟|𝚫(−ℓ𝑖.𝑟𝑟), 𝒚, 𝑭̃, 𝒙, 𝒖, 𝑧𝑗 = 𝑖  ~ 𝑇𝑁1(𝜃ℓ.𝑝, 𝜎ℓ.𝑝
2 ;  ℓ𝑖.𝑟𝑟 > 0), 

𝑭̃𝑖𝑗|𝚫, 𝒚, 𝒙, 𝒖, 𝑧𝑗 = 𝑖  ~ 𝑁𝑚(𝜽𝐹𝑖 , 𝚵𝐹𝑖),   𝑖 = 1,… , 𝑔; 𝑗 = 1,… , 𝑛, 

such that 

𝚵𝐹𝑖 = 𝜅(𝑢𝑖𝑗)(𝑰𝑚 + 𝑳̃𝑖
⊤𝑫𝑖

−1𝑳̃𝑖)
−1

, 

And 

𝜽𝐹𝑖 = 𝜅
−1(𝑢𝑖𝑗)𝚵𝐹𝑖[𝚷f𝑖𝒙f𝑖𝑗 + 𝑳̃𝑖

⊤𝑫𝑖
−1(𝒚𝑗 − 𝜽𝑖 − 𝚷e𝑖𝒙e𝑖𝑗)], 

𝐷𝑖.𝑠|𝚫(−𝐷𝑖.𝑠), 𝒚, 𝑭̃, 𝒙, 𝒖, 𝑧𝑗 = 𝑖  ~ 𝐼𝐺(𝜚𝑖.𝑝, 𝜉𝑖.𝑝),   𝑠 = 1,… , 𝑝;  𝑖 = 1, … , 𝑔, 

such that 𝜚𝑖.𝑝 =
𝑛𝑖

2
+ 𝜚𝑖 and  

𝜉𝑖.𝑝 = 𝜉𝑖 + 0.5∑ 𝜅−1(𝑢𝑖𝑗)(𝑦𝑗.𝑠 − 𝜃𝑖.𝑠 − 𝓵𝑖.𝑠
⊤ 𝑭̃𝑖𝑗 −𝜛e𝑖.𝑠𝑤e𝑖𝑗.𝑠)

2
𝐵𝑖 , 

𝝕e𝑖|𝚫(−𝝕e𝑖), 𝒚, 𝑭̃, 𝒙, 𝒖, 𝑧𝑗 = 𝑖   ~ 𝑁𝑝(𝒂𝑖.𝑝, 𝑨𝑖.p), 𝑖 = 1,… , 𝑔, 

such that 

𝑨𝑖.𝑝 = (𝑨𝑖
−1 +∑ 𝜅−1(𝑢𝑖𝑗)𝑷𝑖𝑗

⊤𝑫𝑖
−1𝑷𝑖𝑗𝐵𝑖 )

−1
, 

where 

𝑷𝑖𝑗 = diag(𝒙e𝑖𝑗), 

And 

𝒂𝑖.𝑝 = 𝑨𝑖.𝑝[𝑨𝑖
−1𝒂𝑖 + ∑ 𝜅−1(𝑢𝑖𝑗)𝑷𝑖𝑗

⊤𝑫𝑖
−1(𝒚𝑗 − 𝜽𝑖 − 𝑳̃𝑖𝑭̃𝑖𝑗)𝐵𝑖 ], 

vec(𝚫f𝑖)|𝚫(−𝚷f𝑖), 𝒚, 𝑭̃, 𝒙, 𝒖, 𝑧𝑗 = 𝑖   ~ 𝑁𝑚𝑞(𝜽f𝑖.𝑝, 𝚵f𝑖.𝑝), 𝑖 = 1,… , 𝑔, 

such that 

𝜽f𝑖.𝑝 = 𝚵f𝑖.𝑝 ((𝑵f𝑖
−1⨂ 𝑯f𝑖

−1)vec(𝑪f𝑖) + ∑ 𝜅(𝑢𝑖𝑗)
−1
(𝑴f𝑖𝑗⨂ 𝑰𝑚)𝐵𝑖 ), 

and 
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𝚵f𝑖.𝑝 = [(𝑵f𝑖
−1⨂ 𝑯f𝑖

−1) + ∑ 𝜅−1(𝑢𝑖𝑗)(𝑹f𝑖𝑗⨂ 𝑰𝑚)𝐵𝑖
]
−1

, 

where 𝑴f𝑖𝑗 = 𝑭̃𝑖𝑗𝒙f𝑖𝑗
⊤  and 𝑹f𝑖𝑗 = 𝒙f𝑖𝑗𝒙f𝑖𝑗

⊤ , and ⨂  and "vec" are referred to the Kronecker product  and 

a matrix vectorization, respectively. 

𝑿f𝑖𝑗|𝚫, 𝒚, 𝑭̃, 𝒖, 𝑧𝑗 = 𝑖 ~ 𝑇𝑁𝑞(𝜽𝑋f𝑖𝑗 , 𝚵𝑋f𝑖𝑗;  𝑿f𝑖𝑗
 > 𝜏𝑖𝟏𝑞), 𝑗 = 1,… , 𝑛; ,   𝑖 = 1,… , 𝑔, 

such that 

𝚵𝑋f𝑖𝑗 = 𝜅(𝑢𝑖𝑗)(𝑰𝑞 + 𝚷f𝑖
⊤𝚷f𝑖)

−1
, 

and 

𝜽𝑋f𝑖𝑗 = 𝜅
−1(𝑢𝑖𝑗)𝚵𝑋f𝑖𝑗(𝜏𝑖𝟏𝑞 + 𝚷f𝑖

⊤𝑭̃𝑖𝑗), 

𝑿e𝑖𝑗
 |𝚫, 𝒚, 𝑭̃, 𝒖, 𝑧𝑗 = 𝑖 ~ 𝑇𝑁𝑝(𝜽𝑋e𝑖𝑗 , 𝚵𝑋e𝑖𝑗;  𝑿e𝑖𝑗 > 𝜏𝑖𝟏𝑝),   𝑗 = 1,… , 𝑛; ,   𝑖 = 1,… , 𝑔, 

such that 

𝚵𝑋e𝑖𝑗 = 𝜅(𝑢𝑖𝑗)(𝑰𝑝 + 𝚷e𝑖
⊤𝑫𝑖

−1𝚷e𝑖)
−1

, 

and 

𝜽𝑋e𝑖𝑗 = 𝜅
−1(𝑢𝑖𝑗)𝚵𝑋e𝑖𝑗 (𝜏𝑖𝟏𝑝 + 𝚷e𝑖

⊤𝑫𝑖
−1(𝒚𝑗 − 𝜽𝑖 − 𝑳̃𝑖𝑭̃𝑖𝑗))  

Consequently, we have: 

𝜋(𝑍𝑗 = 𝑖|𝚫, 𝒚, 𝑭̃, 𝒖, 𝒙) =
𝑝𝑖𝒻(𝒚𝑗|𝛀𝑖)

∑ 𝑝ℎ𝒻(𝒚ℎ|𝛀ℎ)
𝑔
ℎ=1

, 𝑖 = 1,… , 𝑔; 𝑗 = 1, … , 𝑛. 

such that 𝒻(𝒚𝑗|𝛀𝑖) is given in Eq (14). 

𝑈𝑖𝑗|𝚫, 𝒚, 𝑭̃, 𝒙, 𝑧𝑗 = 𝑖  ~ 𝐺𝐼𝐺
∗(a𝑖𝑗 , b𝑖𝑗 , √c𝑖𝑗), 𝑖 = 1, … , 𝑔; 𝑗 = 1,… , 𝑛, 

such that 𝜅(𝑢) = 𝑢, a𝑖𝑗 = 𝜐𝑖 − 𝑝 + (𝑚 + 𝑞) 2⁄ , b𝑖𝑗 = √𝜓𝑖 and 

c𝑖𝑗 = 𝜓𝑖 + (𝒚𝑗 − 𝜽𝑖 − 𝑳̃𝑖𝑭̃𝑖𝑗 − 𝚷e𝑖𝒙e𝑖𝑗)
⊤
𝑫𝑖
−1(𝒚𝑗 − 𝜽𝑖 − 𝑳̃𝑖𝑭̃𝑖𝑗 −𝚷e𝑖𝒙e𝑖𝑗)

+ (𝑭̃𝑖𝑗 − 𝚷f𝑖𝒙f𝑖𝑗)
⊤
(𝑭̃𝑖𝑗 − 𝚷f𝑖𝒙f𝑖𝑗) + (𝑿e𝑖𝑗 − 𝜏𝑖𝟏𝑝)

⊤
(𝑿e𝑖𝑗 − 𝜏𝑖𝟏𝑝)

+ (𝑿f𝑖𝑗 − 𝜏𝑖𝟏𝑞)
⊤
(𝑿f𝑖𝑗 − 𝜏𝑖𝟏𝑞) 

Furthermore, 

𝜋(𝜐𝑖|𝚫(−𝜐𝑖), 𝒚, 𝑭̃, 𝒖, 𝒙, 𝑧𝑗 = 𝑖 )~ 𝜋1(𝜐𝑖)𝜙(𝜐𝑖|𝜃𝑖 + 𝜎𝑖
2∑ log(𝑢𝑖)

 
𝐵𝑖

, 𝜎𝑖
2), 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
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such that 𝜋1(𝜐𝑖) = (𝐾𝜐𝑖(𝜓𝑖))
−𝑛𝑖

; 

𝜋(𝜓𝑖|𝚫(−𝜓𝑖), 𝒚, 𝑭̃, 𝒖, 𝒙, 𝑧𝑗 = 𝑖 ) ~ 𝜋2(𝜓𝑖) × 𝐸(𝜍𝑖 + ∑ (𝑢𝑖𝑗 + 𝑢𝑖𝑗
−1) 2⁄𝐵𝑖

), 

such that 𝜋2(𝜓𝑖) = (𝐾𝜐𝑖(𝜓𝑖))
−𝑛𝑖

 . The posteriors of 𝜐𝑖  and 𝜓𝑖  are not in the closed forms but an 

MCMC scheme such as the Metropolis-Hastings algorithm can be embedded to draw samples. 
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