A number of methods have been proposed to solve the equilibrium problems, one of which is an extragradient method that is particularly interesting and effective. In this paper, we introduce a modified subgradient extragradient method to solve the equilibrium problems in a real Hilbert space. The proposed method uses a non-monotonic step size rule based on local bi-function information instead of its Lipschitz-type constant or other line search method and is capable of solving pseudo-monotone equilibrium problems. Our method only needs to solve a strongly convex programming problem per iteration. Applications of the designed algorithm are presented in order to solve fixed-point problems and variational inequalities. Finally, several computational experiments are studied to confirm the effectiveness of the proposed method. The results of our study include many similar literature studies and detailed numerical studies also show their potential usefulness.
Citation: Habib ur Rehman, Wiyada Kumam, Poom Kumam, Meshal Shutaywi. A new weak convergence non-monotonic self-adaptive iterative scheme for solving equilibrium problems[J]. AIMS Mathematics, 2021, 6(6): 5612-5638. doi: 10.3934/math.2021332
A number of methods have been proposed to solve the equilibrium problems, one of which is an extragradient method that is particularly interesting and effective. In this paper, we introduce a modified subgradient extragradient method to solve the equilibrium problems in a real Hilbert space. The proposed method uses a non-monotonic step size rule based on local bi-function information instead of its Lipschitz-type constant or other line search method and is capable of solving pseudo-monotone equilibrium problems. Our method only needs to solve a strongly convex programming problem per iteration. Applications of the designed algorithm are presented in order to solve fixed-point problems and variational inequalities. Finally, several computational experiments are studied to confirm the effectiveness of the proposed method. The results of our study include many similar literature studies and detailed numerical studies also show their potential usefulness.
[1] | P. N. Anh, L. T. H. An, The subgradient extragradient method extended to equilibrium problems, Optimization, 64 (2015), 225–248. doi: 10.1080/02331934.2012.745528 |
[2] | P. N. Anh, T. N. Hai, P. M. Tuan, On ergodic algorithms for equilibrium problems, J. Global Optim., 64 (2016), 179–195. doi: 10.1007/s10898-015-0330-3 |
[3] | M. Bhatti, M. A. Abbas, M. Rashidi, A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD, Appl. Math. Comput., 316 (2018), 381–389. |
[4] | M. Bianchi, S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90 (1996), 31–43. doi: 10.1007/BF02192244 |
[5] | G. Bigi, M. Castellani, M. Pappalardo, M. Passacantando, Existence and solution methods for equilibria, Eur. J. Oper. Res., 227 (2013), 1–11. doi: 10.1016/j.ejor.2012.11.037 |
[6] | E. Blum, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123–145. |
[7] | F. Browder, W. Petryshyn, Construction of fixed points of nonlinear mappings in hilbert space, J. Math. Anal. Appl., 20 (1967), 197–228. doi: 10.1016/0022-247X(67)90085-6 |
[8] | Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in hilbert space, J. Optim. Theory Appl., 148 (2011), 318–335. doi: 10.1007/s10957-010-9757-3 |
[9] | P. L. Combettes, S. A. Hirstoaga, Equilibrium programming in hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117–136. |
[10] | K. Fan, A minimax inequality and applications, Inequalities III (O. Shisha, Ed.), Academic Press, New York, 1972. |
[11] | M. Farhan, Z. Omar, F. Mebarek-Oudina, J. Raza, Z. Shah, R. V. Choudhari, et al., Implementation of the one-step one-hybrid block method on the nonlinear equation of a circular sector oscillator, Comput. Math. Model., 31 (2020), 116–132. doi: 10.1007/s10598-020-09480-0 |
[12] | S. D. Flåm, A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program., 78 (1996), 29–41. doi: 10.1007/BF02614504 |
[13] | H. Heinz, P. L. C. A. Bauschke, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics, 2Eds., Springer International Publishing, 2017. |
[14] | D. V. Hieu, Halpern subgradient extragradient method extended to equilibrium problems, Rev. R. Acad. Cienc. Exactas, Fís. Nat. Ser. A. Mat., 111 (2016), 823–840. |
[15] | D. V. Hieu, New extragradient method for a class of equilibrium problems in hilbert spaces, Appl. Anal., 97 (2017), 811–824. |
[16] | D. V. Hieu, P. K. Quy, L. V. Vy, Explicit iterative algorithms for solving equilibrium problems, Calcolo, 56 (2019), 1–21. doi: 10.1007/s10092-018-0296-x |
[17] | A. N. Iusem, G. Kassay, W. Sosa, On certain conditions for the existence of solutions of equilibrium problems, Math. Program., 116 (2007), 259–273. |
[18] | A. N. Iusem, W. Sosa, On the proximal point method for equilibrium problems in hilbert spaces, Optimization, 59 (2010), 1259–1274. doi: 10.1080/02331931003603133 |
[19] | I. Konnov, Application of the proximal point method to nonmonotone equilibrium problems, J. Optim. Theory Appl., 119 (2003), 317–333. doi: 10.1023/B:JOTA.0000005448.12716.24 |
[20] | I. Konnov, Equilibrium models and variational inequalities, Elsevier, 2007. |
[21] | G. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756. |
[22] | S. I. Lyashko, V. V. Semenov, A new two-step proximal algorithm of solving the problem of equilibrium programming, In: Optimization and Its Applications in Control and Data Sciences, Springer International Publishing, (2016), 315–325. |
[23] | G. Mastroeni, On auxiliary principle for equilibrium problems, In: Nonconvex Optimization and Its Applications, Springer US, (2003), 289–298. |
[24] | F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Eng. Sci. Technol. Int. J., 20 (2017), 1324–1333. |
[25] | R. Mohebbi, M. Rashidi, Numerical simulation of natural convection heat transfer of a nanofluid in an l-shaped enclosure with a heating obstacle, J. Taiwan Inst. Chem. Eng., 72 (2017), 70–84. doi: 10.1016/j.jtice.2017.01.012 |
[26] | A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999), 91–100. |
[27] | L. Muu, W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal.: Theory, Methods Appl., 18 (1992), 1159–1166. doi: 10.1016/0362-546X(92)90159-C |
[28] | L. D. Muu, T. D. Quoc, Regularization algorithms for solving monotone ky fan inequalities with application to a nash-cournot equilibrium model, J. Optim. Theory Appl., 142 (2009), 185–204. doi: 10.1007/s10957-009-9529-0 |
[29] | Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 591–598. doi: 10.1090/S0002-9904-1967-11761-0 |
[30] | T. D. Quoc, P. N. Anh, L. D. Muu, Dual extragradient algorithms extended to equilibrium problems, J. Global Optim., 52 (2011), 139–159. |
[31] | D. Quoc Tran, M. Le Dung, V. H. Nguyen, Extragradient algorithms extended to equilibrium problems¶, Optimization, 57 (2008), 749–776. doi: 10.1080/02331930601122876 |
[32] | M. Salari, M. M. Rashidi, E. H. Malekshah, M. H. Malekshah, Numerical analysis of turbulent/transitional natural convection in trapezoidal enclosures, Int. J. Numer. Methods Heat Fluid Flow, 27 (2017), 2902–2923. doi: 10.1108/HFF-03-2017-0097 |
[33] | P. Santos, S. Scheimberg, An inexact subgradient algorithm for equilibrium problems, Comput. Appl. Math., 30 (2011), 91–107. |
[34] | S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in hilbert spaces, J. Math. Anal. Appl., 331 (2007), 506–515. doi: 10.1016/j.jmaa.2006.08.036 |
[35] | K. Tan, H. Xu, Approximating fixed points of nonexpansive mappings by the ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301–308. doi: 10.1006/jmaa.1993.1309 |
[36] | J. V. Tiel, Convex analysis: An introductory text, Wiley, New York, 1 Eds., 1984. |
[37] | H. ur Rehman, P. Kumam, A. B. Abubakar, Y. J. Cho, The extragradient algorithm with inertial effects extended to equilibrium problems, Comput. Appl. Math., 39 (2020), 1–26. doi: 10.1007/s40314-019-0964-8 |
[38] | H. ur Rehman, P. Kumam, Y. J. Cho, P. Yordsorn, Weak convergence of explicit extragradient algorithms for solving equilibirum problems, J. Inequal. Appl., 2019 (2019), 1–25. doi: 10.1186/s13660-019-1955-4 |
[39] | H. ur Rehman, P. Kumam, Q. L. Dong, Y. J. Cho, A modified self-adaptive extragradient method for pseudomonotone equilibrium problem in a real hilbert space with applications, Math. Methods Appl. Sci., (2020), 1–21. |
[40] | H. ur Rehman, P. Kumam, Y. J. Cho, Y. I. Suleiman, W. Kumam, Modified popov's explicit iterative algorithms for solving pseudomonotone equilibrium problems, Optim. Methods Software, (2020), 1–32. |
[41] | H. ur Rehman, P. Kumam, W. Kumam, M. Shutaywi, W. Jirakitpuwapat, The inertial sub-gradient extra-gradient method for a class of pseudo-monotone equilibrium problems, Symmetry, 12 (2020), 463. doi: 10.3390/sym12030463 |
[42] | H. ur Rehman, P. Kumam, M. Shutaywi, N. A. Alreshidi, W. Kumam, Inertial optimization based two-step methods for solving equilibrium problems with applications in variational inequality problems and growth control equilibrium models, Energies, 13 (2020), 3292. doi: 10.3390/en13123292 |
[43] | H. ur Rehman, P. Kumam, K. Sitthithakerngkiet, Viscosity-type method for solving pseudomonotone equilibrium problems in a real hilbert space with applications, AIMS Math., 6 (2021), 1538–1560. doi: 10.3934/math.2021093 |
[44] | H. ur Rehman, N. Pakkaranang, P. Kumam, Y. J. Cho, Modified subgradient extragradient method for a family of pseudomonotone equilibrium problems in real a hilbert space, J. Nonlinear Convex Anal., 21 (2020), 2011–2025. |