An optimal control problem with quadratic cost functional on time scales is studied and some optimality necessary conditions are derived. The main tool used is the integration by parts on time scales.
Citation: Qiu-Yan Ren, Jian-Ping Sun. Optimality necessary conditions for an optimal control problem on time scales[J]. AIMS Mathematics, 2021, 6(6): 5639-5646. doi: 10.3934/math.2021333
An optimal control problem with quadratic cost functional on time scales is studied and some optimality necessary conditions are derived. The main tool used is the integration by parts on time scales.
[1] | Z. Bartosiewicz, N. Martins, D. F. M. Torres, The second Euler-Lagrange equation of variational calculus on time scales, Eur. J. Control, 17 (2011), 9–18. doi: 10.3166/ejc.17.9-18 |
[2] | R. A. C. Ferreira, A. B. Malinowska, D. F. M. Torres, Optimality conditions for the calculus of variations with higher-order delta derivatives, Appl. Math. Lett., 24 (2011), 87–92. doi: 10.1016/j.aml.2010.08.023 |
[3] | R. Hilscher, V. Zeidan, First order conditions for generalized variational problems over time scales, Comput. Math. Appl., 62 (2011), 3490–3503. doi: 10.1016/j.camwa.2011.08.065 |
[4] | A. B. Malinowska, N. Martins, D. F. M. Torres, Transversality conditions for infinite horizon variational problems on time scales, Optim. Lett., 5 (2011), 41–53. doi: 10.1007/s11590-010-0189-7 |
[5] | P. Stehlik, B. Thompson, Maximum principles for second order dynamic equations on time scales, J. Math. Anal. Appl., 331 (2007), 913–926. doi: 10.1016/j.jmaa.2006.09.003 |
[6] | R. Hilscher, V. Zeidan, Weak maximum principle and accessory problem for control problems on time scales, Nonlinear Anal., 70 (2009), 3209–3226. doi: 10.1016/j.na.2008.04.025 |
[7] | L. Bourdin, E. Trélat, Pontryagin maximum principle for finite dimensional nonlinear optimal control problems on time scales, SIAM J. Control Optim., 51 (2013), 3781–3813. doi: 10.1137/130912219 |
[8] | S. Zhou, H. Li, Maximum principles for dynamic equations on time scales and their applications, J. Appl. Math., 2014 (2014), 434582. |
[9] | M. Bohner, K. Kenzhebaev, O. Lavrova, O. Stanzhytskyi, Pontryagin's maximum principle for dynamic systems on time scales, J. Difference Equ. Appl., 23 (2017), 1161–1189. doi: 10.1080/10236198.2017.1284829 |
[10] | Y. Gong, X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales, J. Ind. Manage. Optim., 5 (2009), 1–10. |
[11] | Y. Peng, X. Xiang, Y. Gong, G. Liu, Necessary conditions of optimality for a class of optimal control problems on time scales, Comput. Math. Appl., 58 (2009), 2035–2045. doi: 10.1016/j.camwa.2009.08.032 |
[12] | G. Liu, X. Xiang, Y. Peng, Nonlinear integro-differential equations and optimal control problems on time scales, Comput. Math. Appl., 61 (2011), 155–169. doi: 10.1016/j.camwa.2010.10.013 |
[13] | D. A. Carlson, The existence of optimal controls for problems defined on time scales, J. Optim. Theory Appl., 166 (2015), 351–376. doi: 10.1007/s10957-014-0674-8 |
[14] | O. E. Lavrova, Conditions for the existence of optimal control for some classes of differential equations on time scales, J. Math. Sci., 222 (2017), 276–295. doi: 10.1007/s10958-017-3299-2 |
[15] | J. P. Sun, Q. Y. Ren, Y. H. Zhao, An optimal control problem governed by nonlinear first order dynamic equation on time scales, Math. Probl. Eng., 2020 (2020), 3869089. |
[16] | M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. |
[17] | S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität Würzburg, 1988. |
[18] | V. Lakshmikantham, S. Sivasundaram, B. Kaymakcalan, Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996. |
[19] | M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003. |
[20] | J. P. Sun, W. T. Li, Existence of solutions to nonlinear first-order PBVPs on time scales, Nonlinear Anal., 67 (2007), 883–888. doi: 10.1016/j.na.2006.06.046 |