Citation: Mustafa Gürbüz, Yakup Taşdan, Erhan Set. Ostrowski type inequalities via the Katugampola fractional integrals[J]. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
[1] | R. P. Agarwal, M. J. Luo, R. K. Raina, On Ostrowski type inequalities, Fasciculi Mathematici, 56 (2016), 5-27. doi: 10.1515/fascmath-2016-0001 |
[2] | M. Alomari, M. Darus, S. S. Dragomir, et al. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071-1076. doi: 10.1016/j.aml.2010.04.038 |
[3] | H. Budak, M. Z. Sarikaya, E. Set, Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex in the second sense, Journal of Applied Mathematics and Computational Mechanics, 15 (2016), 11-21. |
[4] | A. Erdélyi, W. Magnus, F. Oberhettinger, et al. Higher transcendental functions, Vol. I-Ⅲ, Krieger Pub., Melbourne, Florida, 1981. |
[5] | İ. İşcan, Ostrowski type inequalities for p-convex functions, New Trends in Mathematical Sciences, 3 (2016), 140-150. |
[6] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865. |
[7] | U. N. Katugampola, New approach to generalized fractional derivatives, Bulletin of Mathematical Analysis and Applications, 6 (2014), 1-15. |
[8] | A. A. Kilbas, Hadamard-type fractional calculus, Journal of Korean Mathematical Society, 38 (2001), 1191-1204. |
[9] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 2006. |
[10] | G. W. Leibniz, "Letter from Hanover, Germany to G.F.A. L'Hospital, September 30, 1695", Leibniz Mathematische Schriften. Olms-Verlag, Hildesheim, Germany, 1962. p.301-302, First published in 1849. |
[11] | A. Ostrowski, Uber die absolutabweichung einer differentienbaren funktionen von ihren Integralmittelwert, Comment. Math. Hel., 10 (1938), 226-227. |
[12] | M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, P. Am. Math. Soc., 145 (2017), 1527-1538. |
[13] | E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-Convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147-1154. doi: 10.1016/j.camwa.2011.12.023 |
[14] | K. S. Zhang, J. P. Wan, p-Convex functions and their properties, Pure Appl. Math., 23 (2007), 130-133. |