Citation: Md. Nurul Islam, Md. Asaduzzaman, Md. Shajib Ali. Exact wave solutions to the simplified modified Camassa-Holm equation in mathematical physics[J]. AIMS Mathematics, 2020, 5(1): 26-41. doi: 10.3934/math.2020003
[1] | H. Resat, L. Petzold, M. F. Pettigrew, Kinetic modeling of biological system, Comput. Syst. Biol., 541 (2009), 311-335. doi: 10.1007/978-1-59745-243-4_14 |
[2] | J. F. Alzaidy, The fractional sub-equation method and exact analytical solutions for some nonlinear fractional PDEs, Am. J. Math. Anal., 3 (2013), 14-19. |
[3] | M. Kaplan, A. Bekir, A. Akbulut, et al. The modified simple equation method for nonlinear fractional differential equations, Rom. J. Phys., 60 (2015), 1374-1383. |
[4] | B. Lu, The first integral method for some time fractional differential equations, J. Math. Appl., 395 (2012), 684-693. |
[5] | M. N. Alam, M. A. Akbar, The new approach of the generalized (G'/G)-expansion method for nonlinear evolution equations, Ain Shams Eng. J., 5 (2014), 595-603. doi: 10.1016/j.asej.2013.12.008 |
[6] | M. N. Islam, M. A. Akbar, New exact wave solutions to the space-time fractional coupled Burgers equations and the space-time fractional foam drainage equation, Cogent Phys., 5 (2018), 1422957. |
[7] | A. Bekir, O. Guner, Exact solutions of nonlinear fractional differential equation by (G'/G)-expansion method, Chin. Phys. B, 22 (2013), 110202. |
[8] | A. Bekir, O. Guner, The (G'/G)-expansion method using modified Riemann-Liouville derivative for some space-time fractional differential equations, Ain Shams Eng. J., 5 (2014), 959-965. doi: 10.1016/j.asej.2014.03.006 |
[9] | A. M. Wazwaz, The variational iteration method for analytic treatment for linear and nonlinear ODEs, Appl. Math. Comput., 212 (2007), 120-134. |
[10] | A. M. Wazwaz, The variational iteration method: A powerful scheme for handling linear and nonlinear diffusion equations, Comput. Math. Appl., 54 (2007), 933-939. doi: 10.1016/j.camwa.2006.12.039 |
[11] | N. Faraz, Y. Khan, A. Yildirim, Analytical approach to two-dimensional viscous flow with a shrinking sheet via variational iteration algorithm-II, J. King Saud Univ.-Sci., 23 (2011), 77-81. doi: 10.1016/j.jksus.2010.06.010 |
[12] | Y. Khan, N. Faraz, Application of modified Laplace decomposition method for solving boundary layer equation, J. King Saud Univ. Sci., 23 (2011), 115-119. doi: 10.1016/j.jksus.2010.06.018 |
[13] | A. M. Wazwaz, The modified decomposition method and Pade approximants for a boundary layer equation in unbounded domain, Appl. Math. Comput., 177 (2006), 737-744. |
[14] | B. Zheng, Q. Feng, The Jacobi elliptic equation method for solving fractional partial differential equations, Abst. Appl. Anal., 2014 (2014), 249071. |
[15] | S. M. Ege, E. Misirli, Solutions of space-time fractional foam drainage equation and the fractional Klein-Gordon equation by use of modified Kudryashov method, Int. J. Res. Advent Tech., 2 (2014), 384-388. |
[16] | G. W. Wang, T. Z. Xu, The modified fractional sub-equation method and its applications to nonlinear fractional partial differential equations, Rom. J. Phys., 59 (2014), 636-645. |
[17] | S. Gupta, D. Kumar, J. Singh, Application of He's homotopy perturbation method for solving nonlinear wave-like equations with variable coefficients, Int. J. Adv. Appl. Math. Mech., 1 (2013), 65-79. |
[18] | S. Gupta, J. Singh, D. Kumar, Application of homotopy perturbation transform method for solving time-dependent functional differential equations, Int. J. Nonlin. Sci., 16 (2013), 37-49. |
[19] | K. Khan, M. A. Akbar, N. H. M. Ali, The modified simple equation method for exact and solitary wave solutions of nonlinear evolution equation: The GZK-BBM equation and right-handed non commutative Burgers equations, ISRN Math. Phys., 2013 (2013), 146704. |
[20] | A. Bekir, M. Kaplan, O. Guner, A novel modified simple equation method and its application to some nonlinear evolution equation system, AIP Conf. Proc., 1611 (2015), 30-36. |
[21] | M. N. Islam, M. A. Akbar, Close form exact solutions to the higher dimensional fractional Schrodinger equation via the modified simple equation method, J. Appl. Math. Phys., 6 (2018) 90-102. |
[22] | J. Akther, M. A. Akbar, Solitary wave solution to two nonlinear evolution equations via the modified simple equation method, New Trends Math. Sci., 4 (2016), 12-26. doi: 10.20852/ntmsci.2016422033 |
[23] | A. M. Wazwaz, The tanh-function method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154 (2004), 713-723. |
[24] | M. Dehghan, A finite difference method for a non-local boundary value problem for two dimensional heat equations, Appl. Math. Comput., 112 (2000), 133-142. |
[25] | B. C. Shin, M. T. Darvishi, A. Barati, Some exact and new solutions of the Nizhnik-Novikov-Vesselov equation using the exp-function method, Comput. Math. Appl., 58 (2009), 2147-2151. doi: 10.1016/j.camwa.2009.03.006 |
[26] | C. Q. Dai, J. F. Zhang, Application of He's exp-function method to the stochastic mKdV equation, Int. J. Nonlin. Sci. Numer. Simulat., 10 (2009), 675-680. |
[27] | W. M. Zhang, L. X. Tian, Generalized solitary solution and periodic solution of the combined KdV-mKdV equation with variable coefficients using the exp-function method, Int. J. Nonlin. Sci. Numer. Simulat., 10 (2009), 711-715. |
[28] | Y. M. Zhao, F-expansion method and its application for finding new exact solutions to the Kudryashov-Sinelshchikov equation, J. Appl. Math., 2013 (2013), 895760. |
[29] | A. Filiz, M. Ekici, A. Sonmezoglu, F-expansion method and new exact solutions of the Schrodinger-KdV equation, Sci. World J., 2014 (2014), 534063. |
[30] | R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Frac. Calculus Appl. Anal., 12 (2009), 299-318. |
[31] | A. J. M. Jawad, The sine-cosine function method for the exact solutions of nonlinear partial differential equations, IOSR J. Math., 13 (2012), 186-191. |
[32] | A. Hossein, S. A. Refahi, R. Hadi, Exact solutions for the fractional differential equations by using the first integral method, Nonlin. Eng., 4 (2015), 15-22. |
[33] | A. M. Wazwaz, Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations, Phys. Lett. A, 352 (2006), 500-504. doi: 10.1016/j.physleta.2005.12.036 |
[34] | A. Ali, M. A. Iqbal, S. T. Mohyud-Din, Traveling wave solutions of generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony and simplified modified form of Camassa-Hol equation exp(-φ(η))-Expansion method, Egypt. J. Basic Appl. Sci., 3 (2016), 134-140. doi: 10.1016/j.ejbas.2016.01.001 |
[35] | A. Irshad, M. Usman, S. T. Mohyud-Din, Exp-function method for simplified modified Camassa Holm equation, Int. J. Moden. Math. Sci., 4 (2012), 146-155. |
[36] | R. T. Redi, A. A. Anulo, Some new traveling wave solutions of modified Camassa Holm equation by the improved (G'/G)-expansion method, Math. Comput. Sci., 3 (2018), 23-45. doi: 10.11648/j.mcs.20180301.14 |