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Abstract: In this article, we consider the exact solutions to the simplified modified 

Camassa-Holm (SMCH) equation which has many potential applications in mathematical physics 

and engineering sciences. We examine the exact travelling wave solutions by means of the 

modified simple equation (MSE) method by making use of travelling transformation. The 

attained solutions are in the form of trigonometric and hyperbolic functions. We demonstrate that 

the method is more general, straightforward and powerful and can be used to examine more 

general travelling wave solutions of various kinds of fractional nonlinear differential equations 

arising in mathematical physics and better than other method. Finally, we show the graphical 

representation and discuss the physical significance of the obtained solutions for its definite 

values of the involved parameters through depicting 3D and 2D figures in order to know the 

physical phenomena. 
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1. Introduction 

Nonlinear evolution equations have much achieved importance and recognition recently. The 

differential equations have proved to be valuable tools to the modeling of many physical phenomena. The 

study of the traveling wave solutions for nonlinear differential equations (NLDEs) play an important role 

in various types of fields, such as, quantum mechanics, electricity, plasma physics, chemical kinematics, 

optical fibers, biological model, electromagnetic field, viscoelasticity, electrochemistry, physics, signal 
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processing, optical fibers, control theory, fluid mechanics and population model [1–4], etc. 

Now-a-days NLDEs have been creating important opportunity for the researchers. As a result, 

in the past few years different efficient and significant methods have been established and enhanced 

to obtain exact solutions to evolution equations, such as, the       -expansion method [5–8], the 

variational iteration method [9–11], the modified decomposition method [12,13], the Jacobi elliptic 

function method [14], the modified Kudryashov method [15], the fractional sub-equation method [16], the 

homotopy perturbation method [17,18],  the MSE method [19–22], the tanh-function method [23], 

the finite difference method [24], the exp-function method [25–27], the F-expansion method [28,29], 

the operational method [30], the sine-cosine method [31], the first integral method [32], etc. 

In 2006, Wazwaz [33] studies a family of important physical equations which is known as 

modified  - equation and he provides the following form of that modified  - equation: 

  21 0t xxt x x xx xxxu u u u u u uu       ,        (1.1) 

where,   is a positive integer. By taking 2  , Wazwaz [33] reduces Eq. (1.1) to the following 

modified Camassa-Holm (MCH) equation: 

23 2 0t xxt x x xx xxxu u u u u u uu     .        (1.2) 

Simplifying the MCH Eq. (1.2), we attain the following equation which is known as simplified 

modified Camassa-Holm (SMCH) equation with involving parameters andk  : 

               
     . 

The study of the SMCH equation has explained many significant and sensible ambiences. In present 

literature, the SMCH equation has investigated through the           -expansion method [34], the 

exp-function method [35], the improved       -expansion method [36], etc. 

The aim of this article is to examine the fresh, useful and more general traveling wave solutions 

to the SMCH equation by aid of the MSE method. The MSE method is a recently developed effective, 

straightforward, powerful and rising method to investigate traveling wave solutions to the NLDEs. 

We also have shown the graphical representation of the attained solutions of its definite values of the 

involved parameters through depicting 3D and 2D figures. 

The rest of the article is patterned as follows: In Section 2, we have described the MSE method. 

Section 3 is used to determine the fresh exact traveling wave solutions to the equation. In Section 4, 

we have shown the graphical representations and physical significance and in Section 5, we have 

represented the comparison and discussed the results. Finally, in Section 6, we have concluded this 

article. 

2. Outline of the MSE method 

Now, we expressed the MSE method which is used by many researchers to observe the solitary 

wave solutions to nonlinear evolution equations (NLEEs). Let us consider the nonlinear evolution 

equations (NLEE) in two independent variables   and  , in the following form: 
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( , , , , , ) 0t x xx ttR u u u u u          (2.1) 

where  ,u u x t  is an unknown function, R  is a polynomial of  ,u x t and its derivatives in 

which the highest order derivatives and nonlinear terms are involved and its partial derivatives is 
2 2

2 2
, , ,t x tt xx

u u u u
u u u u

t x t x

   
   
   

. 

To solve the NLEE (2.1) by aid of the MSE method, we represent the main steps in the 

following form: 

Step 1: We consider the real variables   and   by the traveling wave variable  , in the following 

form: 

                                (2.2) 

where   denotes the velocity of the traveling wave. 

By using the traveling wave transformation Eq. (2.2) in Eq. (2.1) then reduces an ordinary 

differential equation (ODE) written in the form: 

                       (2.3) 

where   is a polynomial of     and its derivatives while the highest order derivatives and 

nonlinear terms are connected and the superscripts indicate the ordinary derivatives with respect to  , 

in which       
  

  
. 

Step 2: We assume that the Eq. (2.3) has the traveling wave solution in the following form: 

         
     

    
 
 

 
             (2.4) 

where   be the positive integer,  0,1,2, ,ja j N are unknown constants to be determined, in 

which     , and the unknown function      to be evaluated, in which       
  

  
  . 

Step 3: The positive integer   showing in Eq. (2.4) can be determined by considering the homogeneous 

balance between the highest order derivatives and the nonlinear terms appearing in Eq. (2.3). 

Moreover, if the degree of      is            , therefore, the degree of any other 

expressions will be as follows: 

    
      

   
      and        

      

   
 
 

             (2.5) 

Step 4: Substitute Eq. (2.4) into Eq. (2.3), we calculate all the necessary derivatives              and 

then estimate the function     . Accordingly of this substitution, we get a polynomial of  
 

    
 
 
   

      . In the resultant polynomial, we equate all the coefficients of  
 

    
 
 
           to zero, 

which yields a set of algebraic and differential equations for  0,1,2, ,ja j N ,      and other 

needful parameters. 

Step 5: The solutions of the set of algebraic and differential equations obtained in Step 4, provide the 

values of      and other needful parameters. 
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3. Formulation of the solutions 

In this section, we examine the several new travelling wave solutions to the SMCH equation by 

the implementation of the MSE method. Let us consider the equation in of the form: 

               
                              (3.1) 

where     and   is arbitrary constant. It arises as a description of gravity water waves in the 

long-wave regime, water wave mechanics, turbulent motion, etc. Using the traveling wave 

transformation Eq. (2.2), the Eq. (3.1) converts into a nonlinear ODE 

                                 (3.2) 

Integrating Eq. (3.2) once and choose the integrating constant to zero, yields 

              
 

 
            (3.3) 

Balancing the linear term of the highest order derivative     and the nonlinear term of the 

highest order    occurring in Eq. (3.3), gives    . Therefore, the shape of the solution of Eq. 

(3.3) becomes: 

        
     

    
             (3.4) 

where    and    are constants to be determined, such that      and      is an unknown 

function to be determined. Substituting the values of      and     using Eq. (3.4) into Eq. (3.3) 

and then equating the coefficients of                to zero, these become 

         
 

 
   

          (3.5) 

     
      

     
    

      
                      (3.6) 

     
            

                            (3.7) 

      
    

 

 
   

                              (3.8) 

From Eq. (3.5) and Eq. (3.8), we determine 

         
        

  
 and     

    

  
  since       

Using (3.6) and (3.7), we also obtain 

        
    

   
     

          
    

     

          
   

       (3.9) 

Case 1: 

When       then the solution is discarded. 
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Case 2: 

When    
        

  
      

    

  
 and         

   
   

   
  

           
   

     

          
   

, the solution (3.4) 

becomes below: 

     
        

  
 

             
  
         

         

              
           

  
         

         

                 
 

     (3.10) 

The solution in Eq. (3.10) is useful and further general travelling wave solution which does not 

exist in the previous literature. If we set different special values of    and    consistently further 

numerous solutions can be determined through this method, but for simplicity the remaining 

solutions have not been written down here.  

When     , using the obtained results       and      and if we choose,         

   and           and also by means of the computer algebra like Mathematica, converting the 

solution (3.10) from exponential to trigonometric function, we achieve the solution is simplified as 

the following soliton form: 

      
         

  
    

         

   
        (3.11) 

Also, when      if we choose,            and           , the above 

solution (3.2) reduces to the following soliton: 

      
         

  
    

         

   
        (3.12) 

Solutions in Eq. (3.11) and Eq. (3.12) are the well-known periodic wave solutions. 

Furthermore, when     , using the obtained results       and      and if we choose, 

           and           and also by means of the computer algebra like Mathematica, 

converting the solution in Eq. (3.10) from exponential to trigonometric function, we achieve the 

solution is simplified as the following soliton form: 

      
        

  
     

         

   
        (3.13) 

Also, for      if we choose,            and           , the above solution in 

Eq. (3.10) reduces to the following soliton: 

      
        

  
     

         

   
             (3.14) 

Solutions in Eq. (3.13) and Eq. (3.14) are the well-known singular periodic wave solutions. 

Case 3: 

When     
        

  
      

    

  
 and         

   
   
   
  

           
 
  

     

          
  
 , the solution (3.4) 

reduces: 
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        (3.15) 

The solution in Eq. (3.15) is useful and further general travelling wave solution which does not 

exist in the previous literature. If we set different special values of    and    consistently further 

numerous solutions can be determined through this method, but for simplicity the remaining 

solutions have not been written down here. 

When      using the obtained results       and      and if we choose,         

   and           and also by means of the computer algebra like Mathematica, converting the 

solution in Eq. (3.15) from exponential to trigonometric function, we achieve the solution is 

simplified as the following soliton form: 

      
         

  
    

         

   
        (3.16) 

And, when       if we choose,            and           , the above solution 

in Eq. (3.15) reduces to the following soliton: 

      
         

  
    

         

   
           (3.17) 

Solutions in Eq. (3.16) and in Eq. (3.17) are the well-known periodic wave solutions. 

On the other hand, when      using the obtained results       and      and if we 

choose,            and           and also by means of the computer algebra like 

Mathematica, converting the solution in Eq. (3.15) from exponential to trigonometric function, we 

achieve the solution is simplified as the following soliton form: 

      
        

  
     

         

   
        (3.18) 

Also, when      and if we choose,            and           , the above 

solution in Eq. (3.15) reduces to the following soliton: 

      
        

  
     

         

   
               (3.19) 

Solutions in Eq. (3.18) and in Eq. (3.19) are the well-known singular periodic wave solutions. 

Therefore, summarizing the solutions between Eqs. (3.11), (3.12), (3.16), (3.17) and also 

summarizing between Eqs. (3.14), (3.13), (3.18), (3.19) we attain the following subsequent solutions: 

      
         

  
    

         

   
        (3.20) 

      
         

  
    

         

   
                (3.21) 

      
        

  
     

         

   
         (3.22) 
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                 (3.23) 

Now making use of the wave variable of Eq. (2.2), the solutions in Eqs. (3.20), (3.21), (3.22) 

and (3.23) become as follows: 

           
         

  
    

         

   
       (3.24) 

           
         

  
    

         

   
       (3.25) 

           
        

  
     

         

   
       (3.26) 

           
        

  
     

         

   
       (3.27) 

The solutions in Eqs. (3.24), (3.25), (3.26) and (3.27) are fresh, important and further general to the 

SMCH equation can be extracted. 

Therefore, it is remarkable to observe that the obtained traveling wave solutions arise to be 

suitable to seek for gravity water wave in the long-wave regime, the water wave mechanics, the 

turbulent motion, the driving a flow of fluid and singular periodic waves, etc. 

4. Graphical representations and physical significance 

In this section, we show the graphical representations of the obtained solutions and discuss the 

physical significance to the MSCH equation is arranged below: 

4.1. Graphical representations of the obtained solutions 

The shapes of the figures of the obtained solutions in Eq. (3.24) (positive and negative values) 

for the definite values of the parameters are given below: 

 

Figure 1. 3D and 2D modulus plot of solution in Eq. (3.24) which is periodic wave when 

    and           within the interval          for 3D and     for 2D. 
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Figure 2. 3D and 2D modulus plot of solution in Eq. (3.24) when     and        

          within the interval         for 3D and     for 2D. 

 

Figure 3. 3D and 2D modulus plot of solution in Eq. (3.24) when      and        

          within the interval         for 3D and     for 2D. 

 

Figure 4. 3D and 2D modulus plot of solution in Eq. (3.24) when      and        

          within the interval         for 3D and     for 2D. 

 

Figure 5. 3D and 2D modulus plot of solution in Eq. (3.24) when      and        

           within the interval         for 3D and     for 2D. 
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Figure 6. 3D and 2D modulus plot of solution in Eq. (3.24) when      and        

           within the interval         for 3D and     for 2D. 

 

Figure 7. 3D and 2D modulus plot of solution in Eq. (3.24) when      and        

          within the interval         for 3D and     for 2D. 

 

Figure 8. 3D and 2D modulus plot of solution in Eq. (3.24) when      and        

          within the interval         for 3D and     for 2D. 

 

Figure 9. 3D and 2D modulus plot of solution in Eq. (3.24) when      and        

          within the interval         for 3D and     for 2D. 
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Figure 10. 3D and 2D modulus plot of solution in Eq. (3.24) when      and 

                 within the interval         for 3D and     for 2D. 

 

Figure 11. 3D and 2D modulus plot of solution in Eq. (3.24) when      and 

                  within the interval         for 3D and     for 2D. 

 

Figure 12. 3D and 2D modulus plot of solution in Eq. (3.24) when      and 

                  within the interval         for 3D and     for 2D. 

 

Figure 13. 3D and 2D modulus plot of solution in Eq. (3.24) when      and 

                 within the interval         for 3D and     for 2D. 

The shape of the figures of the obtained solution in Eq. (3.27) (positive and negative values) for 

the definite values of the parameters is shown below: 
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Figure 14. 3D and 2D modulus plot of solution in Eq. (3.27) when     and 

          within the interval            for 3D and     for 2D. 

 

Figure 15. 3D and 2D modulus plot of solution in Eq. (3.27) when             

  within the interval            for 3D and     for 2D. 

 

Figure 16. 3D and 2D modulus plot of solution in Eq. (3.27) when        

        within the interval            for 3D and     for 2D. 

 

Figure 17. 3D and 2D modulus plot of solution in Eq. (3.27) which is singular periodic 

wave when                within the interval            for 3D and 

    for 2D. 
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Figure 18. 3D and 2D modulus plot of solution in Eq. (3.27) which is singular periodic 

wave when     and           within the interval            for 3D 

and     for 2D. 

 

Figure 19. 3D and 2D modulus plot of solution in Eq. (3.27)) which is singular periodic 

wave when      and           within the interval            for 3D 

and     for 2D. 

 

Figure 20. 3D and 2D modulus plot of solution in Eq. (3.27) which is singular periodic 

wave when      and           within the interval            for 3D 

and     for 2D. 

4.2. Physical significance of the obtained solutions 

In this sub-section, we have described the physical significance of the accomplished 

solutions through figures. We have obtained eight solutions where both the solutions in Eq. (3.24) 

and in Eq. (3.25) contain two solutions (positive and negative sign) which are in the trigonometry 

form and both the solutions in Eq. (3.27) and in Eq. (3.27) also contains two solutions (positive 

and negative sign) which are in the trigonometric hyperbolic form. 

From the above graphical representations, we may assert that the solutions might be useful 

to inspect the physical significance in order to know the internal mechanisms of the related 

physical phenomena. We find different shapes of figures for the solutions in Eq. (3.24) and in 

Eq. (3.25), within intervals          and for the solutions in Eq. (3.26) and in Eq. (3.27) 
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within interval            for the different definite values of involved parameters. 

Plotting the figures of the solutions in Eq. (3.24) and in Eq. (3.25,) we have observed that, for 

the different values of the velocity   of the traveling wave, the figures of the obtained solutions 

become different shapes. Plotting the figures of the solutions in Eq. (3.24), we watch that when 

   , the shape of the wave length is large and when    , the shape of the wave length is small. 

Consequently when     , the shape of the wave length larger than      and again when 

    , the shape of the wave length is decreased. It is important to notice that when     , the 

shape of the wave length becomes maximum i.e., larger than other values of the velocity of the 

travelling wave  . We also notice that for larger values of     , the shape of the wave lengths 

decreasing and again increasing and when velocity arises to      then the shape of the figure 

becomes like     . Furthermore, when larger values than     , the shapes of the wave 

lengths decreasing and again increasing and when velocity arises to       then the shape of the 

figures become same to     . 

From the above discussion we have claimed that, the solutions in Eq. (3.24) to the MSCH 

equation are periodic wave solution and its period is     . 

Similarly, plotting the figures of the solutions in Eq. (3.25), we have found the same figures (periodic 

wave) like the shape of the figures in Eq. (3.24) and the same situation arises and also observed that its 

period is     . Therefore, for minimalism, the shapes of the figures of the solutions in Eq. (3.25) have 

not shown here. 

Furthermore, plotting the figures in the case of the solutions in Eq. (3.26) and in Eq. (3.27) we have 

observed that, when                and               and within interval     

       the shapes of the figures are not singular periodic wave. But for other definite values of the 

including parameters within interval           , the shapes of the figures are singular periodic 

wave and for simplicity, only we have depicted the shapes of the figures of the solutions in Eq. (3.27) and 

the shapes of the figures of the solutions have omitted here. 

5. Results, discussion and comparison 

In this section, we notice that, the solutions investigated by the           -expansion method, 

Ali et al. [34], obtained only five (05) wave solutions which were ordinary solutions (see Appendix-1) 

for the SMCH equation. But by using the MSE method, we have obtained eight (08) wave solutions 

which have not been found by the           -expansion method which are useful, efficient and 

more general and give well known shapes like periodic wave solutions and singular periodic wave 

solutions. The different choices of the integral constants from solutions in Eq. (3.10) and in Eq. (3.15), 

it might be obtained huge amount of exact wave solutions. Moreover, the attained solutions might be 

useful to analyze the physical significance. For the definite values of the parameters, different types 

of periodic and singular periodic solutions are derived in our article. 

Therefore, comparing between the obtained solutions and the solutions obtained by the 

          -expansion method [34], we might claim that our obtained solutions are more general 

and useful. 

6. Conclusion 

In this article, we have examined the new, significant and further general travelling wave 

solutions which are in the form of trigonometric and hyperbolic function to the SMCH equation by 
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means of the efficient technique known as MSE method. The attained solutions are in general form 

and the definite values of the included parameters yield diverse known soliton solutions and the 

solutions might be useful to analyze many potential applications in mathematical physics and 

engineering. Furthermore, the MSE method has established better solutions 

than           -expansion method. We also have shown the graphical representation of the 

obtained solutions through depicting figures in order to interpret the physical phenomena of the 

tangible incidents. The established results have shown that the MSE method is straightforward, 

further general, efficient and more powerful and can be used to obtain exact traveling wave solutions 

for many other nonlinear differential equations. 
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Appendix-1 

In this section, we have shown the list of the solutions to the simplified modified 

Camassa-Holm (SMCH) equation investigated by the            method (Ali et al., [34]) 

solutions, are arranged below: 
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