Research article Special Issues

Measure of noncompactness and fractional integro-differential equations with state-dependent nonlocal conditions in Fréchet spaces

  • Received: 06 March 2019 Accepted: 09 October 2019 Published: 15 October 2019
  • MSC : 34G20

  • This paper deals with the existence of mild solutions for non-linear fractional integrodifferential equations with state-dependent nonlocal conditions. The technique used is a generalization of the classical Darbo fixed point theorem for Frechet spaces associated with the concept of measures ′ of noncompactness. An application of the main result has been included.

    Citation: Mouffak Benchohra, Zohra Bouteffal, Johnny Henderson, Sara Litimein. Measure of noncompactness and fractional integro-differential equations with state-dependent nonlocal conditions in Fréchet spaces[J]. AIMS Mathematics, 2020, 5(1): 15-25. doi: 10.3934/math.2020002

    Related Papers:

  • This paper deals with the existence of mild solutions for non-linear fractional integrodifferential equations with state-dependent nonlocal conditions. The technique used is a generalization of the classical Darbo fixed point theorem for Frechet spaces associated with the concept of measures ′ of noncompactness. An application of the main result has been included.



    加载中


    [1] S. Abbas, M. Benchohra, Advanced Functional Evolution Equations and Inclusions, New York: Springer, 2015.
    [2] R. P. Agarwal, B. Andradec, G. Siracusa, On fractional integro-differential equations with statedependent delay, Comput. Math. Appl., 63 (2011), 1143-1149.
    [3] R. R. Akhmerov, M. I. Kamenskii, A. S. Patapov, et al. Measures of Noncompactness and Condensing Operators, Basel: Birkhauser Verlag, 1992.
    [4] J. C. Alvàrez, Measure of noncompactness and fixed points of nonexpansive condensingmappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid, 79 (1985), 53-66.
    [5] A. Anguraj, P. Karthikeyan, J. J. Trujillo, Existence of solutions to fractional mixed integrodifferential equations with nonlocal initial condition, Adv. Differ. Equ., 2011 (2011), 690653.
    [6] W. Arendt, C. Batty, M., Hieber, et al. Vector-Valued Laplace Transforms and Cauchy Problems, Basel: Springer Science & Business Media, 2011.
    [7] K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1970-1977. doi: 10.1016/j.cnsns.2010.08.005
    [8] J. Bana$\grave{s}$, K. Goebel, Measures of Noncompactness in Banach Spaces, New York: Marcel Dekker, 1980.
    [9] M. Benchohra, S. Litimein, Existence results for a new class of fractional integro-differential equations with state dependent delay, Mem. Differ. Equ. Math. Phys., 74 (2018), 27-38.
    [10] D. Bothe, Multivalued perturbation of m-accretive differential inclusions, Isr. J. Math., 108 (1998), 109-138. doi: 10.1007/BF02783044
    [11] L. Byszewski, Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems, Dynam. Systems Appl., 5 (1996), 595-605.
    [12] L. Byszewski, H. Akca, Existence of solutions of a semilinear functional differential evolution nonlocal problem, Nonlinear Anal., 34 (1998), 65-72. doi: 10.1016/S0362-546X(97)00693-7
    [13] C. Cuevas, J. C. de Souza, S-asymptotically ω-periodic solutions of semilinear fractional integrodifferential equations, Appl. Math. Lett., 22 (2009), 865-870. doi: 10.1016/j.aml.2008.07.013
    [14] C. Cuevas, J. C. de Souza, Existence of S-asymptotically ω-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal., 72 (2010), 1683-1689. doi: 10.1016/j.na.2009.09.007
    [15] B. de Andrade, C. Cuevas, S-asymptotically ω-periodic and asymptotically ω-periodic solutions to semi-linear Cauchy problems with non-dense domain, Nonlinear Anal., 72 (2010), 3190-3208. doi: 10.1016/j.na.2009.12.016
    [16] S. Dudek, Fixed point theorems in Fréchet algebras and Fréchet spaces and applications to nonlinear integral equations, Appl. Anal. Discrete Math., 11 (2017), 340-357. doi: 10.2298/AADM1702340D
    [17] S. Dudek, L. Olszowy, Continuous dependence of the solutions of nonlinear integral quadratic Volterra equation on the parameter, J. Funct. Spaces, 2015 (2015), 471235.
    [18] K. J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, New York: Springer-Verlag, 2000.
    [19] H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, Amsterdam: North-Holland, 1985.
    [20] D. J. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, Dordrecht: Kluwer Academic Publishers, 1996.
    [21] E. Hernandez, On abstract differential equations with state dependent non-local conditions, J. Math. Anal. Appl., 466 (2018), 408-425. doi: 10.1016/j.jmaa.2018.05.080
    [22] E. Hernandez, D. O'Regan, On state dependent non-local conditions, Appl. Math. Letters, 83 (2018), 103-109. doi: 10.1016/j.aml.2018.03.022
    [23] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.
    [24] J. Klamka, Schauders fixed-point theorem in nonlinear controllability problems, Control Cybern., 29 (2000), 153-165.
    [25] V. Lakshmikantham, S. Leela, J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge: Cambridge Academic Publishers, 2009.
    [26] C. Lizama, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl., 243 (2000), 278-292. doi: 10.1006/jmaa.1999.6668
    [27] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4 (1980), 985-999. doi: 10.1016/0362-546X(80)90010-3
    [28] L. Olszowy, Solvability of some functional integral equation, Dynam. System. Appl., 18 (2009), 667-676.
    [29] L. Olszowy, Existence of mild solutions for semilinear nonlocal Cauchy problems in separable Banach spaces, Z. Anal. Anwend., 32 (2013), 215-232. doi: 10.4171/ZAA/1482
    [30] L. Olszowy, Existence of mild solutions for semilinear nonlocal problem in Banach spaces, Nonlinear Anal., 81 (2013), 211-223. doi: 10.1016/j.na.2012.11.001
    [31] L. Olszowy, Wędrychowicz S., Mild solutions of semilinear evolution equation on an unbounded interval and their applications, Nonlinear Anal., 72 (2010), 2119-2126. doi: 10.1016/j.na.2009.10.012
    [32] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, New York: Springer-Verlag, 1983.
    [33] J. Prüss, Evolutionary Integral Equations and Applications , Birkhüuser Verlag, 2013.
    [34] R. Wang, D. Chen, On a class of retarded integro-differential equations with nonlocal initial conditions, Comput. Math. Appl., 59 (2010), 3700-3709. doi: 10.1016/j.camwa.2010.04.003
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4411) PDF downloads(896) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog