Research article

Designing Meyer wavelet neural networks for the three-species food chain model

  • Received: 16 August 2022 Revised: 15 September 2022 Accepted: 22 September 2022 Published: 27 September 2022
  • MSC : 65K10, 92B20

  • The current research work is related to present the numerical solutions of three-species food chain model (TS-FCM) by exploiting the strength of Meyer wavelet neural networks (MWNNs) along with the global and local search competencies. The particle swarm optimization technique works as a global operator, while the sequential quadratic programming scheme is applied as a local operator for the TS-FCM. The nonlinear TS-FCM is dependent upon three categories, called consistent of prey populations, specialist predator and top predator. The optimization of an error-based fitness function is presented by using the hybrid computing efficiency of the global and local search schemes, which is designed through the differential form of the designed ordinary differential model and its initial conditions. The proposed results of the TS-FCM are calculated through the stochastic numerical techniques and further comparison is performed by the Adams method to check the exactness of the scheme. The absolute error in good ranges is performed, which shows the competency of the proposed solver. Moreover, different statistical procedures have also been used to check the reliability of the proposed stochastic procedure along with forty numbers of independent trials and 10 numbers of neurons.

    Citation: Thanasak Mouktonglang, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Saira Bhatti, Thongchai Botmart, Wajaree Weera, Chantapish Zamart. Designing Meyer wavelet neural networks for the three-species food chain model[J]. AIMS Mathematics, 2023, 8(1): 61-75. doi: 10.3934/math.2023003

    Related Papers:

  • The current research work is related to present the numerical solutions of three-species food chain model (TS-FCM) by exploiting the strength of Meyer wavelet neural networks (MWNNs) along with the global and local search competencies. The particle swarm optimization technique works as a global operator, while the sequential quadratic programming scheme is applied as a local operator for the TS-FCM. The nonlinear TS-FCM is dependent upon three categories, called consistent of prey populations, specialist predator and top predator. The optimization of an error-based fitness function is presented by using the hybrid computing efficiency of the global and local search schemes, which is designed through the differential form of the designed ordinary differential model and its initial conditions. The proposed results of the TS-FCM are calculated through the stochastic numerical techniques and further comparison is performed by the Adams method to check the exactness of the scheme. The absolute error in good ranges is performed, which shows the competency of the proposed solver. Moreover, different statistical procedures have also been used to check the reliability of the proposed stochastic procedure along with forty numbers of independent trials and 10 numbers of neurons.



    加载中


    [1] H. M. El-Owaidy, A. A. Ragab, M. Ismail, Mathematical analysis of a food-web model, Appl. Math. Comput., 121 (2001), 155–167. https://doi.org/10.1016/S0096-3003(99)00269-6 doi: 10.1016/S0096-3003(99)00269-6
    [2] Y. A. Kuznetsov, S. Rinaldi, Remarks on food chain dynamics, Math. Biosci., 134 (1996), 1–33. https://doi.org/10.1016/0025-5564(95)00104-2 doi: 10.1016/0025-5564(95)00104-2
    [3] F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional Fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [4] H. I. Freedman, J. H. So, Global stability and persistence of simple food chains, Math. Biosci., 76 (1985), 69–86. https://doi.org/10.1016/0025-5564(85)90047-1 doi: 10.1016/0025-5564(85)90047-1
    [5] H. I. Freedman, P. Waltman, Mathematical analysis of some three-species food-chain models, Math. Biosci., 33 (1977), 257–276. https://doi.org/10.1016/0025-5564(77)90142-0 doi: 10.1016/0025-5564(77)90142-0
    [6] Z. Sabir, Stochastic numerical investigations for nonlinear three-species food chain system, Int. J. Biomath., 15 (2021), 2250005. https://doi.org/10.1142/S179352452250005X doi: 10.1142/S179352452250005X
    [7] S. Muratori, S. Rinaldi, Low-and high-frequency oscillations in three-dimensional food chain systems, SIAM J. Appl. Math., 52 (1992), 1688–1706. https://doi.org/10.1137/0152097 doi: 10.1137/0152097
    [8] M. Umar, Z. Sabir, M. A. Z. Raja, Intelligent computing for numerical treatment of nonlinear prey–predator models, Appl. Soft Comput., 80 (2019), 506–524. https://doi.org/10.1016/j.asoc.2019.04.022 doi: 10.1016/j.asoc.2019.04.022
    [9] Z. Sabir, Stochastic numerical investigations for nonlinear three-species food chain system, Int. J. Biomath., 15 (2022), 2250005. https://doi.org/10.1142/S179352452250005X doi: 10.1142/S179352452250005X
    [10] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. https://doi.org/10.2307/2333294 doi: 10.2307/2333294
    [11] R. K. Upadhyay, S. R. K. Iyengar, V. Rai, Chaos: An ecological reality? Int. J. Bifurcat. Chaos, 8 (1998), 1325–1333. https://doi.org/10.1142/S0218127498001029 doi: 10.1142/S0218127498001029
    [12] A. Hastings, T. Powell, Chaos in a three‐species food chain, Ecology, 72 (1991), 896–903. https://doi.org/10.2307/1940591 doi: 10.2307/1940591
    [13] H. Y. Jin, Z. A. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equ., 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
    [14] Z. Sabir, M. A. Z. Raja, A. S. Alnahdi, M. B. Jeelani, M. A. Abdelkawy, Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks, Math. Biosci. Eng., 19 (2022), 351–370. https://doi.org/10.3934/mbe.2022018 doi: 10.3934/mbe.2022018
    [15] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems, Alex. Eng. J., 60 (2021), 2641–2659. https://doi.org/10.1016/j.aej.2021.01.004 doi: 10.1016/j.aej.2021.01.004
    [16] Z. Sabir, M. A. Z. Raja, D. Baleanu, Fractional Mayer Neuro-swarm heuristic solver for multi-fractional Order doubly singular model based on Lane-Emden equation, Fractals, 29 (2021), 2140017. https://doi.org/10.1142/S0218348X2140017X doi: 10.1142/S0218348X2140017X
    [17] M. Umar, Z. Sabir, M. A. Z. Raja, Y. G. Sánchez, A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever, Results Phys., 19 (2020), 103585. https://doi.org/10.1016/j.rinp.2020.103585 doi: 10.1016/j.rinp.2020.103585
    [18] Z. Sabir, S. Saoud, M. A. Z. Raja, H. A. Wahab, A. Arbi, Heuristic computing technique for numerical solutions of nonlinear fourth order Emden–Fowler equation, Math. Comput. Simulat., 178 (2020), 534–548. https://doi.org/10.1016/j.matcom.2020.06.021 doi: 10.1016/j.matcom.2020.06.021
    [19] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, Integrated intelligent computing with neuro-swarming solver for multi-singular fourth-order nonlinear Emden–Fowler equation, Comput. Appl. Math., 39 (2020), 307. https://doi.org/10.1007/s40314-020-01330-4 doi: 10.1007/s40314-020-01330-4
    [20] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden–Fowler equation, Eur. Phys. J. Plus, 135 (2020), 410. https://doi.org/10.1140/epjp/s13360-020-00424-6 doi: 10.1140/epjp/s13360-020-00424-6
    [21] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, A neuro-swarming intelligence-based computing for second order singular periodic non-linear boundary value problems, Front. Phys., 8 (2020), 224. https://doi.org/10.3389/fphy.2020.00224 doi: 10.3389/fphy.2020.00224
    [22] Y. Che, M. Y. A. Keir, Study on the training model of football movement trajectory drop point based on fractional differential equation, Appl. Math. Nonlinear Sci., 7 (2022), 425–430. https://doi.org/10.2478/amns.2021.2.00095 doi: 10.2478/amns.2021.2.00095
    [23] Z. Sabir, C. M. Khalique, M. A. Z. Raja, D. Baleanu, Evolutionary computing for nonlinear singular boundary value problems using neural network, genetic algorithm and active-set algorithm, Eur. Phys. J. Plus, 136 (2021), 195. https://doi.org/10.1140/epjp/s13360-021-01171-y doi: 10.1140/epjp/s13360-021-01171-y
    [24] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, T. Saeed, Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model, Chaos Soliton. Fract., 152 (2021), 111404. https://doi.org/10.1016/j.chaos.2021.111404 doi: 10.1016/j.chaos.2021.111404
    [25] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, D. Baleanu, FMNSICS: Fractional Meyer neuro-swarm intelligent computing solver for nonlinear fractional Lane–Emden systems, Neural Comput. Appl, 34 (2022), 4193–4206. https://doi.org/10.1007/s00521-021-06452-2 doi: 10.1007/s00521-021-06452-2
    [26] J. Li, Y. Wu, S. Fong, A. J. Tallón-Ballesteros, X. S. Yang, S. Mohammed, et al., A binary PSO-based ensemble under-sampling model for rebalancing imbalanced training data, J. Supercomput., 78 (2022), 7428–7463. https://doi.org/10.1007/s11227-021-04177-6 doi: 10.1007/s11227-021-04177-6
    [27] M. Sharif, J. Amin, M. Raza, M. Yasmin, S. C. Satapathy, An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor, Pattern Recogn. Lett., 129 (2020), 150–157. https://doi.org/10.1016/j.patrec.2019.11.017 doi: 10.1016/j.patrec.2019.11.017
    [28] S. Shahbeig, M. S. Helfroush, A. Rahideh, A fuzzy multi-objective hybrid TLBO–PSO approach to select the associated genes with breast cancer, Signal Process., 131 (2017), 58–65. https://doi.org/10.1016/j.sigpro.2016.07.035 doi: 10.1016/j.sigpro.2016.07.035
    [29] Y. Su, L. Han, J. Wang, H. Wang, Quantum‐behaved RS‐PSO‐LSSVM method for quality prediction in parts production processes, Concurr. Comput. Pract. Exp., 34 (2022), e5522. https://doi.org/10.1002/cpe.5522 doi: 10.1002/cpe.5522
    [30] M. A. Abdelkareem, H. Rezk, E. T. Sayed, A. Alaswad, A. M. Nassef, A. G. Olabi, Data on fuzzy logic based-modelling and optimization of recovered lipid from microalgae, Data Brief, 28 (2020), 104931. https://doi.org/10.1016/j.dib.2019.104931 doi: 10.1016/j.dib.2019.104931
    [31] M. Maitra, A. Chatterjee, A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding, Expert Syst. Appl., 34 (2008), 1341–1350. https://doi.org/10.1016/j.eswa.2007.01.002 doi: 10.1016/j.eswa.2007.01.002
    [32] P. Attaviriyanupap, H. Kita, E. Tanaka, J. Hasegawa, A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function, IEEE T. Power Syst., 17 (2002), 411–416. https://doi.org/10.1109/TPWRS.2002.1007911 doi: 10.1109/TPWRS.2002.1007911
    [33] T. A. A. Victoire, A. E. Jeyakumar, Hybrid PSO–SQP for economic dispatch with valve-point effect, Electr. Pow. Syst. Res., 71 (2004), 51–59. https://doi.org/10.1016/j.epsr.2003.12.017 doi: 10.1016/j.epsr.2003.12.017
    [34] J. S. Alsumait, J. K. Sykulski, A. K. Al-Othman, A hybrid GA–PS–SQP method to solve power system valve-point economic dispatch problems, Appl. Energ., 87 (2010), 1773–1781. https://doi.org/10.1016/j.apenergy.2009.10.007 doi: 10.1016/j.apenergy.2009.10.007
    [35] T. A. A. Victoire, A. E. Jeyakumar, A modified hybrid EP–SQP approach for dynamic dispatch with valve-point effect, Int. J. Elec. Power, 27 (2005), 594–601. https://doi.org/10.1016/j.ijepes.2005.06.006 doi: 10.1016/j.ijepes.2005.06.006
    [36] P. E. Gill, W. Murray, M. A. Saunders, Large-scale SQP methods and their application in trajectory optimization, In: Computational optimal control, Switzerland: Birkhä user Basel, 1994, 29–42. https://doi.org/10.1007/978-3-0348-8497-6_3
    [37] B. Mansoornejad, N. Mostoufi, F. Jalali-Farahani, A hybrid GA–SQP optimization technique for determination of kinetic parameters of hydrogenation reactions, Comput. Chem. Eng., 32 (2008), 1447–1455. https://doi.org/10.1016/j.compchemeng.2007.06.018 doi: 10.1016/j.compchemeng.2007.06.018
    [38] S. Sivasubramani, K. S. Swarup, Hybrid DE–SQP algorithm for non-convex short term hydrothermal scheduling problem, Energ. Convers. Manage., 52 (2011), 757–761. https://doi.org/10.1016/j.enconman.2010.07.056 doi: 10.1016/j.enconman.2010.07.056
    [39] A. Schiela, J. Ortiz, An SQP method for equality constrained optimization on Hilbert manifolds, SIAM J. Optim., 31 (2021), 2255–2284. https://doi.org/10.1137/20M1341325 doi: 10.1137/20M1341325
    [40] N. Bajeux, B. Ghosh, Stability switching and hydra effect in a predator–prey metapopulation model, Biosystems, 198 (2020), 104255. https://doi.org/10.1016/j.biosystems.2020.104255 doi: 10.1016/j.biosystems.2020.104255
    [41] B. Ghosh, O. L. Zhdanova, B. Barman, E. Y. Frisman, Dynamics of stage-structure predator-prey systems under density-dependent effect and mortality, Ecol. Complex., 41 (2020), 100812. https://doi.org/10.1016/j.ecocom.2020.100812 doi: 10.1016/j.ecocom.2020.100812
    [42] D. Pal, B. Ghosh, T. K. Kar, Hydra effects in stable food chain models, Biosystems, 185 (2019), 104018. https://doi.org/10.1016/j.biosystems.2019.104018 doi: 10.1016/j.biosystems.2019.104018
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1779) PDF downloads(170) Cited by(6)

Article outline

Figures and Tables

Figures(5)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog